Home
Cisco Systems OL-6217-01 User's Manual
Contents
1. E implementing the Cisco SWAN Framework Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Enter the following commands to define the SNMP communities infra ap config snmp server view iso iso included infra ap config snmp server community lt read only community gt view iso RO infra ap config snmp server community lt read write community gt view iso RW Enter a host name for the access point infra ap config hostname lt hostname gt Enter the following to define Telnet or SSH users infra ap config username lt username gt password lt password gt Enter the following to enable SSH optional step infra ap config ip domain name lt ip domain name gt infra ap config crypto key generate rsa general keys modulus lt key size gt Enter the following to turn off Telnet optional step define an access control list and apply it to the Telnet lines Obviously several access control list definitions can accomplish this task but the following is an example infra ap config access list lt access list number gt permit tcp any any neq telnet infra ap config line 0 16 infra ap config line access class lt access list number gt Enter the following command to define the WLCCP credentials for the access point infra ap config wlccp ap username lt wlccp_username gt password lt password gt Subsequent to these steps customers can configure additional parameters like V
2. Define the AAA parameters for client authentication wlsm config radius server host lt ip address gt auth port lt auth port gt acct port lt acct port gt key lt shared secret gt wlsm config aaa group server radius client_group wlsm config sg radius server lt ip address gt auth port lt 1812 gt acct port lt 1813 gt wlsm config aaa authentication login client group group client_group wlsm config wlccp authentication server client any client group OL 6217 01 Cisco Structured Wireless Aware Network SWAN Implementation Guide gy Cisco Structured Wireless Aw are Network SWAN Implementation Guide E implementing the Cisco SWAN Framework Step 8 This step is very important After the Cisco SWAN topology is established all 802 1x client authentications are forwarded through the WDS If the client authentication group s is not properly configured WLAN clients are denied access to the network RADIUS servers are not redefined with the first command if you are using the same AAA server for infrastructure and client authentication Define the CiscoWorks WLSE wlsm config wlccp wnm ip address lt wlse ip address gt Configuring the Infrastructure Access Points Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Configuring the infrastructure access points to register with the WDS on the WLSM is similar to configuring infrastructure access points when the WDS is hosted
3. sup720 show mobility mn MN Mac Address MN IP Address AP IP Address Wireless Network ID 0004 e28b 2c28 172 16 4 3 10 200 20 49 4 00d0 59c8 60e1 172 16 4 2 10 200 20 49 4 Enter the following command to show information about a specific mobility group show mobility network lt network id gt Cisco Structured Wireless Aw are Netw ork SWAN Implementation Guide o Ten _Cisco Structured Wireless Aw are Network SWAN Implementation Guide Implementing the Cisco SWAN Framework W The tunnel source network attributes and state registered access points with tunnel end points for the mobility group and the registered mobile in the mobility group are shown sup720 show mobility network 4 Wireless Network ID 4 Wireless Tunnel Source IP Address 10 100 4 1 Wireless Network Attributes Trusted Wireless Network State Up Registered Access Point on Wireless Network 4 AP IP Address AP Mac Address Wireless Network ID 10 200 20 49 000b fcfb e836 4 Registered Mobile Nodes on Wireless Network 4 MN Mac Address MN IP Address AP IP Address Wireless Network ID 0004 e28b 2c28 172 16 4 3 10 200 20 49 4 00d0 59c8 60e1 172 16 4 2 10 200 20 49 4 Fast Secure Roaming with CCKM WLAN clients by definition are mobile The WLAN industry has standardized the IEEE 802 1X with EAP authentication for secure authorization and access to the WLAN The inherent mobility of WLAN clients creates significant challenges in managing WLAN client auth
4. SWAN Implementation Guide OL 6217 01 Cisco Structured Wireless Aw are Network SWAN Implementation Guide HE Cisco SWAN Framework Overview WLSE e Cisco and Cisco compatible clients Softw are Components There are two software components essential to the operation of the Cisco SWAN framework WDS and WLCCP WLCCP WLCCP is a Cisco defined control protocol that allows control communication between the Cisco SWAN components WLCCP messages are used to authenticate and register Cisco SWAN components constructing the Cisco SWAN control topology The WLCCP messages are used in WLAN client association and authentication and re association and re authentication during client roaming WLCCP RM is used to transfer radio measurement data between the Cisco SWAN components A technical discussion of WLCCP is beyond the scope of this document WDS WDS are a set of IOS services that define a WLAN control domain Within a WLAN control domain all infrastructure access points register with the WDS After registration 802 1x WLAN client authentications are forwarded through the WDS Infrastructure access points register their associated WLAN clients with the WDS so the WDS tracks all WLAN clients within the WLAN control domain WDS also collects radio management data from infrastructure access points and optionally mobile nodes aggregates data and forwards them to the CiscoWorks WLSE for intelligent processing WDS can be implement
5. WLSM based WDS i je D 2 wecer messages 7 Bilas rt __ SaesGRe en on en See 2 WLCCP Messages _ Outside mGRE Tunnel WLAN Control Domain Data Packets Transported on _ lt i mGRE Tunnel 127150 In the switch based WDS solution mGRE tunnels are built from the Catalyst 6500 switch hosting the WLSM where the WDS is running Wireless client data is tunneled to the Catalyst 6500 switch where it is forwarded appropriately The mGRE tunnel legs are built when the infrastructure access points register with the WDS on the WLSM Wireless client authentication and MN registration WLCCP messages are forwarded to the WLSM for centralized processing Unlike wireless client data traffic WLCCP messages are not forwarded on the mGRE tunnel legs Rather these messages traverse the network like standard IP packets The switch based WDS architecture offers complete control and data plane separation which are essential elements to true network scalability The switch based WDS solution facilitates seamless roaming across a Layer 3 WLAN control context and supports up to 300 registered infrastructure access points and 6000 MNs per WLSM CISCO SWAN Framework Components The Cisco SWAN framework has software and hardware components The software components are WDS WLCCP The hardware components are WDS host devices Infrastructure access points Cisco Structured Wireless Aw are Network
6. AAA Server IP Delesng a Proxy Dunibunsn Table Butry Nane Abbe J Te ACS 113 CECIEL Metweck Device Groups table and Proxy la Proxy Dictribeation Tabe Duti ble reformation appre I pou are net unng NDGr the AAA Cents table and the SO echt weet tatei O row ban Step4 Complete the form by entering a the WDS host device host name in the AAA Client Hostname field b the WDS host IP address in the AAA Client Address field and c a RADIUS shared secret in the Key field Note The key value is entered later on each WDS host device Step 5 Select RADIUS Cisco Aironet in the Authenticate Using selection menu Step6 Select the desired RADIUS logging options Step7 Click Submit or Submit Restart see Figure 6 oL 6217 01 Cisco Structured Wireless Aware Network SWAN Implementation Guide gy Cisco Structured Wireless Aw are Network SWAN Implementation Guide W implementing the Cisco SWAN Framework Step 8 Step 9 Figure 6 CiscoSecure ACS NAS Setup 3 Diseeserute AG Micre pel lai Erte irer agi De pk yes Rives los Heb ip ees E hets 00 1 2 2 Andan v e is Ge x tassu Network Configuration ren lal e AAA Clieat Hostnune AAA Cher IP Address Ker Network Device Groep Authenme are Using Single Coanert TACACH AAA Client Log Update Watsdulog Parkets fren thas AAA fal Chew Log RADIUS Turaekng Packets from this AAA Chem Reglare RADIUS Poat ufo with Ucernaen
7. After the encryption keys are negotiated the WDS is interrogated The WDS device reports its registered access points to the CiscoWorks WLSE The CiscoWorks WLSE then interrogates the registered access points This process may take 5 to 10 minutes depending on the number of access points The infrastructure access points are managed in the CiscoWorks WLSE by completing Steps 2 through 4 This procedure is unnecessary if the advanced discovery auto manage option was configured prior to WDS host discovery Validating the Setup The IOS command line on the WLSM is used to validate the configurations To validate the WDS configuration enter this command show wlccp wds ap All registered access points and infrastructure access points are listed wlsm show wlccp wds ap MAC ADDR IP ADDR STATE LIFETIME 000d 28f2 33ea 10 1 12 19 REGISTERED 171 000d 28f2 3426 10 1 12 23 REGISTERED 173 000d 28f2 3436 10 1 12 22 REGISTERED 183 000c 8576 326e 10 1 12 18 REGISTERED 497 To validate that the CiscoWorks WLSE is correctly registered enter this command show wlccp wnm status The CiscoWorks WLSE IP address is listed and Security Keys Setup appears in the status field wlsm show wlccp wnm status WNM IP Address 172 20 98 221 Status SECURITY KEYS SETUP OL 6217 01 Cisco Structured Wireless Aware Network SWAN Implementation Guide gy Cisco Structured Wireless Aw are Network SWAN Implementation Guide E implementing
8. Meo ede CHA JADIARAD Etta Separase Set at checked Pore ssssessssessse J Rabi IUS y endar Se 7 Am trates aaa B Arewa Disabibesd Stans tono 2 E cbt vaa ftw cata Step5 Repeat Steps 2 through 4 for each credentials pair you intend on using for infrastructure authentication The CiscoSecure ACS setup for infrastructure access point authentication is now complete Configuring the Local RADIUS Server on the Access Point for Infrastructure Authentication In environments where the AAA infrastructure does not support Cisco LEAP the local RADIUS server on an access point must be used for infrastructure authentication of access points This section covers the steps required to configure the local RADIUS server on an access point Cisco Structured Wireless Aware Network OL 6217 01 SWAN Implementation Guide E Cisco Structured Wireless Aw are Network SWAN Implementation Guide W implementing the Cisco SWAN Framework Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 To configure the local RADIUS server on an access point follow these steps Access the access point command line interface and go into configuration mode Enter the following IOS command AAA ap config aaa new model Enter the following IOS command AAA ap config radius server local You are now in the local RADIUS server configuration mode Enter the following command for each WDS host device while in the local RADIUS server c
9. and extensive reporting The CiscoWorks WLSE also applies intelligence to radio management data gathered from the network The intelligent processing of data allows for advanced RF management tools that control power and channel settings on access points detect interference and detect locate and mitigate against WLAN intrusion sources Fast secure roaming using CCKM requires client device support for encryption key management Cisco Aironet client adapters and non Cisco client adapters compliant to the Cisco Compatible Extensions version 2 requirements support CCKM with Cisco LEAP authentication Cisco Aironet client adapters and non Cisco client adapters compliant with Cisco Compatible Extensions version 3 requirements can use CCKM with EAP FAST authentication Other EAP types such as EAP TLS and PEAP may be used with CCKM with some third party supplicants WLAN clients can also be used to gather radio management data with a radio measurement technique called the client walkabout and during normal operations with a measurement technique called radio monitoring Cisco client adapters and client adapters compliant with the Cisco Compatible Extensions version 2 requirements are used to gather radio measurement data Implementing the Cisco SWAN Framework The phases of constructing the Cisco SWAN framework are 1 WDS activation 2 Infrastructure access point authentication and registration 3 CiscoWorks WLSE authentication and registration 4 Ci
10. causes interference to radio or television reception try to correct the interference by using one or more of the following measures Turn the television or radio antenna until the interference stops e Move the equipment to one side or the other of the television or radio e Move the equipment farther away from the television or radio e Plug the equipment into an outlet that is on a different circuit from the television or radio That is make certain the equipment and the television or radio are on circuits controlled by different circuit breakers or fuses Modifications to this product not authorized by Cisco Systems Inc could void the FCC approval and negate your authority to operate the product The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California Berkeley UCB as part of UCB s public domain version of the UNIX operating system All rights reserved Copyright 1981 Regents of the University of California NOTWITHSTANDING ANY OTHER WARRANTY HEREIN ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED AS IS WITH ALL FAULTS CISCO AND THE ABOVE NAMED SUPPLIERS DISCLAIM ALL WARRANTIES EXPRESSED OR IMPLIED INCLUDING WITHOUT LIMITATION THOSE OF MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING USAGE OR TRADE PRACTICE IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT SPEC
11. section focuses on what needs to be configured to use CCKM The details and theory of operations for CCKM are beyond the scope of this document The configuration tasks required to use CCKM are as follows Configure the WDS for 802 1X client authentication Configure the access point to use CCKM Configure the WLAN client device if necessary The details of configuring the WDS for client authentication are covered in the Implementing the Cisco SWAN Framework section on page 13 specifically in the sections on configuring the WDS host devices OL 6217 01 Cisco Structured Wireless Aware Network SWAN Implementation Guide gy Cisco Structured Wireless Aw are Network SWAN Implementation Guide HI implementing the Cisco SWAN Framework When Not Using Multiple Authentication Types Encryption Types or VLANs Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 If you are not using multiple authentication or encryption types or VLANs on the access points follow these steps to configure the access points to use CCKM Gain control of the access point command line interface and enter configuration mode Enter the interface configuration mode for the appropriate radio Interface dot11Radio 0 corresponds to the 802 11b g radio and Interface dot 1Radio I corresponds to the 802 1 1a radio infra ap config interface dot11Radio lt 0 1 gt Set the cipher type for the interface infra ap config if encryption mode
12. snmp server community lt snmp read write community gt RW Unlike the SNMP configurations on the WLSM and access points an SNMP view definition is not required by the supervisor Configuring the WDS on the WLSM In this section the configuration steps required to set up the WLSM and WDS on the WLSM are provided Configuring the WDS on the WLSM is very similar to configuring WDS on the access points with a few variations The necessary tasks are as follows Define the WLAN VLAN to the supervisor Define SNMP communities Define a host name for the WLSM Define AAA parameters for infrastructure authentication Cisco Structured Wireless Aw are Netw ork SWAN Implementation Guide Y 26 OL 6217 01 _Cisco Structured Wireless Aw are Network SWAN Implementation Guide Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Implementing the Cisco SWAN Framework W Define AAA parameters for WLAN client authentication Define the CiscoWorks WLSE Follow these steps to complete the tasks Access the WLSM command line interface Define the WLAN VLAN wlsm config wlan vlan lt VLAN number gt wlsm config wlan ipaddr lt ip address gt lt network mask gt wlsm config wlan gateway lt gateway ip address gt wlsm config wlan admin wlsm config wlan exit The VLAN number corresponds to the VLAN number created in Step 2 of the supervisor configuration The gateway IP address is configured as the I
13. the following command to define the WLCCP credentials for the access point infra ap config wlccp ap username lt wlccp_username gt password lt password gt Enter the following to direct the infrastructure access point to the WDS on the WLSM infra ap config wlccp ap wds ip address lt wlsm ip address gt Cisco Structured Wireless Aw are Netw ork SWAN Implementation Guide OL 6217 01 _Cisco Structured Wireless Aw are Network SWAN Implementation Guide Implementing the Cisco SWAN Framework W Subsequent to these steps customers can configure additional parameters like VLANs SSIDs and encryption settings Customers may choose to use the CiscoWorks WLSE to do these configurations in bulk after the CiscoWorks WLSE has discovered the WDS host and the infrastructure access points Managing the WLSM and Access Points with the CiscoW orks WLSE Step 1 Step 2 Step 3 Step 4 Ss Note When WLSM is active and all of the infrastructure access points are registered the access points must be discovered and managed on the CiscoWorks WLSE Follow these steps to manage the WLSM Log into the CiscoWorks WLSE Navigate to Devices gt Discover Select Managed Unmanaged in the table of contents on the left hand side The WLSM WDS device displays in the New folder on the right hand side action pane Select the WLSM and then Manage The negotiation of security between the WDS and CiscoWorks WLSE begins
14. word partner does not imply a partnership relationship between Cisco and any other company 0406R Cisco Aironet 1400 Series Wireless Bridge Deployment Guide Copyright 2004 Cisco Systems Inc All rights reserved Audience 5 Acronyms and Terms 6 Cisco SWAN Framework Overview 7 CISCO SWAN Framework Components 11 Software Components 12 Hardware Components 12 Implementing the Cisco SWAN Framework 13 Common Tasks 14 Configuring the CiscoSecure ACS Server for Infrastructure Authentication 14 Configuring the Local RADIUS Server on the Access Point for Infrastructure Authentication 18 Configuring the AAA Server to Support WLAN Client Authentication Preparing the CiscoW orks W LSE for M anaging WLAN Devices Distributed W DS Solution Configuration 21 Configuring the W DS Access Point 21 Configuring the Infrastructure Access Point M anaging the Access Points with the CiscoW orks WLSE Validating the Configuration 24 23 Infrastructure Integrated W DS Solution Configuration Configuring the Catalyst 6500 Supervisor 720 Configuring the WDS onthe WLSM 26 Configuring the Infrastructure Access Points M anaging the WLSM and Access Points with the CiscoW orks W LSE Validating the Setup 29 25 27 25 24 18 Fast Secure Roaming with Cisco Centralized Key M anagement CCKM When Not Using Multiple Encryption Types When Using Multiple Encryption Types 31 Configuring ACU to use CCKM 32 Cisco SWAN Radio Management Featu
15. AN Framework W Enter the following to define AAA parameters for client authentication wds ap config radius server host lt ip address gt auth port lt auth port gt acct port lt acct port gt key lt shared secret gt wds ap config aaa group server radius client_group wds ap config sg radius server lt ip address gt auth port lt 1812 gt acct port lt 1813 gt wds ap config aaa authentication login client group group client_group wds ap config wlccp authentication server client any client group This step is very important After the Cisco SWAN topology is established all 802 1x client authentications are forwarded through the WDS If the client authentication group s is not properly configured WLAN clients are denied network access RADIUS servers redefined with the first command are using the same AAA server for infrastructure and client authentication Enter the following commands to enable WDS service on the access point wds ap config wlccp wds priority lt priority number gt Valid priority values are between and 255 inclusive The WDS priority field is used to elect a WDS master access point when more than one access point on the subnet is configured When multiple access points are configured to run WDS an election is held The access point with the highest WDS priority value becomes the active WDS and the other access point s go into WDS standby mode If two or more access points have the same WDS p
16. Cisco SYSTEMS Cisco Struc rp ireless Aware Network SW AN Implementation Guide J anuary 2005 Corporate Headquarters Cisco Systems Inc 170 West Tasman Drive San J ose CA 95134 1706 http www cisco com Tel 408 526 4000 800 553 NETS 6387 Fax 408 526 4100 Text Part Number OL 6217 01 A Y THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE ALL STATEMENTS INFORMATION AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND EXPRESS OR IMPLIED USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY The following information is for FCC compliance of Class A devices This equipment has been tested and found to comply with the limits for a Class A digital device pursuant to part 15 of the FCC rules These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment This equipment generates uses and can radiate radio frequency energy and if not installed and used in accordance with the instruction manual may c
17. IAL CONSEQUENTIAL OR INCIDENTAL DAMAGES INCLUDING WITHOUT LIMITATION LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES CCSP the Cisco Square Bridge logo Cisco Unity Follow Me Browsing FormShare and StackWise are trademarks of Cisco Systems Inc Changing the Way We Work Live Play and Learn and iQuick Study are service marks of Cisco Systems Inc and Aironet ASIST BPX Catalyst CCDA CCDP CCIE CCIP CCNA CCNP Cisco the Cisco Certified Internetwork Expert logo Cisco IOS Cisco Press Cisco Systems Cisco Systems Capital the Cisco Systems logo Empowering the Internet Generation Enterprise Solver EtherChannel EtherFast EtherSwitch Fast Step GigaDrive GigaStack HomeLink Internet Quotient IOS IP TV iQ Expertise the iQ logo iQ Net Readiness Scorecard LightStream Linksys MeetingPlace MGX the Networkers logo Networking Academy Network Registrar Packet PIX Post Routing Pre Routing ProConnect RateMUX Registrar ScriptShare SlideCast SMARTnet StrataView Plus SwitchProbe TeleRouter The Fastest Way to Increase Your Internet Quotient TransPath and VCO are registered trademarks of Cisco Systems Inc and or its affiliates in the United States and certain other countries All other trademarks mentioned in this document or Website are the property of their respective owners The use of the
18. LANs SSIDs and encryption settings Customers may choose to use the CiscoWorks WLSE to do these configurations in bulk after the CiscoWorks WLSE has discovered the WDS host and the infrastructure access points Managing the Access Points with the CiscoWorks WLSE Step 1 Step 2 Step 3 When WDS is active on its host s and all infrastructure access points are registered with the appropriate WDS the access points must be discovered and managed on the CiscoWorks WLSE The procedure is as follows Log into the CiscoWorks WLSE Navigate to Devices gt Discover Select Managed Unmanaged in the table of contents on the left hand side The WDS device s are listed in the New folder portion on the right hand side action pane Select the WDS device s and then Manage The negotiation of security between the WDS and CiscoWorks WLSE begins After the encryption keys are negotiated the WDS is interrogated The WDS device reports its registered access points to the CiscoWorks WLSE The CiscoWorks WLSE then interrogates the registered access points This process may take 5 to 10 minutes depending on the number of access points The infrastructure access points should now be managed in the CiscoWorks WLSE following the instructions in Steps 2 and 3 Note This procedure is unnecessary if the advanced discovery auto manage option was configured prior to WDS host discovery Cisco Structured Wireless Aw are Netw ork SWAN Implementatio
19. P address of this VLAN interface on the supervisor The admin command instructs the WLSM to use this VLAN for controlling messaging to and from the supervisor Define a default route to the supervisor wism config ip route 0 0 0 0 0 0 0 0 lt gateway ip address gt The lt gateway IP address gt is the address of the WLAN VLAN interface created in Step 2 of the supervisor configuration Define the SNMP communities wilsm config snmp server view iso iso included wlsm config snmp server community lt read only community gt view iso RO wilsm config snmp server community lt read write community gt view iso RW Enter a host name for the WLSM wlsm config hostname lt hostname gt Define the AAA parameters for infrastructure authentication wlsm config aaa new model lsm config radius server host lt ip address gt auth port lt auth port gt acct port lt acct port gt key lt shared secret gt lsm config aaa group server radius wlccp_infra config sg radius server lt ip address gt auth port lt 1812 gt acct port lt 1813 gt config aaa authentication login wlccp infra group wlccp_infra config wlccp authentication server infrastructure wlccp infra ism LSM E LSM The RADIUS server IP address should be that of the AAA server for infrastructure authentication If this is the local RADIUS server on an access point the authentication port is always 1812 and the accounting port is always 1813
20. access points forward client association authentication and roaming information through the WDS via WLCCP MN registration messages allowing the WDS to control and track wireless clients If client authentication is implemented via any 802 1x with EAP such as Cisco LEAP EAP FAST PEAP EAP TLS or EAP TTLS the WDS performs an additional important role by acting as the 802 1x authenticator for all wireless clients In 802 1x authentication transactions the WDS communicates directly with the RADIUS server Any valid wireless client associated with an infrastructure access point and registered with the WDS A WDS its registered infrastructure access points and registered clients make up a WLAN control domain Wireless clients can seamlessly roam between access points within a WLAN control domain A WDS also collects radio management data from the infrastructure access points and potentially the MNs within the WLAN control domain via special WLCCP radio management WLCCP RM messages This data is aggregated by the WDS and passed on to the WLSE in WLCCP RM messages The WLSE uses this RM data to control and manage the radio coverage environment and to detect rogue access points and clients Cisco SWAN offers two basic WLAN architectures an architecture supporting a Layer 2 WLAN control domain and an architecture supporting a Layer 3 WLAN control domain The Layer 2 architecture leverages access point based WDS This architecture is called the acces
21. adapters using the Cisco Aironet Client Utility ACU The ACU is used to configure Cisco Aironet 350 series client adapters Newer Cisco client adapters like the CB21A and CB21AG may use the Cisco Aironet Desktop Utility ADU instead of the ACU No configuration is required to use CCKM with the WLAN client when using the ADU To configure the ACU to use CCKM follow these steps Open the ACU Click Profile Management Either create a new profile or select an existing profile to edit assuming the existing profile implements a supporting 802 1X or EAP authentication type After configuring the SSID s and any parameters in the RF Network or Advanced Infrastructure tabs select Network Security Configure the EAP authentication parameters Check the Allow Fast Roaming CCKM check box see Figure 12 Figure 12 Configuring the ACU for CCKM 590 Seri Properes J CORM Lxa7p ponent Syster Posveta AE Neweok Advanced fritedsactse Noazh Securty Netwok Autherticaton D WiFi Protected Access WA LEAP EAPFAST Hot Based EAP 302 bx T Allow Fast Roaming CCK Oats Eronoon Oman WEP Allow Azpocastion to Mood Cels Chi Deads 127144 0K Corea Hep Click OK to save the profile Return to the main ACU window and click Select Profile oL 6217 01 Cisco Structured Wireless Aware Network SWAN Implementation Guide jg Cisco Structured Wireless Aw are Network SWAN Implementatio
22. agement information and performing device discovery ACS CiscoSecure Access Control Server An optional AAA product from Cisco that is often used with the Cisco SWAN framework WLSM Wireless LAN Service Module A service module component of the Cisco SWAN framework The WLSM is a member of the Catalyst 6500 service module family that enables the Cisco SWAN switch based WDS architecture Client A wireless end user device such as a laptop computer PDA or wireless IP phone MN Mobile Node In Cisco SWAN framework terminology a mobile node is a valid authenticated wireless client device Infrastructure Access Point In the Cisco SWAN framework an infrastructure access point is an access point that is registered with a WDS host device and can deliver Cisco SWAN functionality WLAN Control Domain A WLAN control domain consists of a WDS host device its registered infrastructure access points and all of its mobile nodes WDS Host An IOS based Cisco device hosting WDS that is either a Cisco Aironet Access Point or the WLSM mi Cisco Structured Wireless Aw are Netw ork SWAN Implementation Guide OL 6217 01 _Cisco Structured Wireless Aw are Network SWAN Implementation Guide Term Cisco SWAN Framework Overview fi Table 1 Acronyms Terms and Definitions Definition Access Point Based WDS Architecture The Access Point Based WDS architecture is an architect
23. ameters can be configured by right clicking on the access point in the Location Manager The antenna parameters include antenna type azimuth down tilt from horizon height and any estimated cable loss When the buildings are created the access points are placed and any access point antenna parameters are configured the Cisco SWAN framework is ready for radio management Cisco SWAN Radio M anagement Features An extensive discussion of the deployment and use of Cisco SWAN framework radio management features is beyond the scope of this document This section provides some guidance on the next steps for Cisco SWAN framework radio management The Cisco SWAN framework radio management features use data gathered by three methods access point radio scan client walkabout and radio monitoring The access point radio scan and radio monitoring are required methods and the client walkabout is an optional procedure Typically the first radio management step is to run an access point radio scan This scan can be run from the Radio Manager gt AP Radio Scan option in the CiscoWorks WLSE or as a step in the assisted site survey tool The scan is required to create an initial calibrated path loss model of the RF environment which considers path loss between access points resulting from natural attenuation factors in the RF environment such as walls and identifies potential sources of contention in the RF environment The client walkabout is an opt
24. ause harmful interference to radio communications Operation of this equipment in a residential area is likely to cause harmful interference in which case users will be required to correct the interference at their own expense The following information is for FCC compliance of Class B devices The equipment described in this manual generates and may radiate radio frequency energy If it is not installed in accordance with Cisco s installation instructions it may cause interference with radio and television reception This equipment has been tested and found to comply with the limits for a Class B digital device in accordance with the specifications in part 15 of the FCC rules These specifications are designed to provide reasonable protection against such interference in a residential installation However there is no guarantee that interference will not occur in a particular installation Modifying the equipment without Cisco s written authorization may result in the equipment no longer complying with FCC requirements for Class A or Class B digital devices In that event your right to use the equipment may be limited by FCC regulations and you may be required to correct any interference to radio or television communications at your own expense You can determine whether your equipment is causing interference by turning it off If the interference stops it was probably caused by the Cisco equipment or one of its peripheral devices If the equipment
25. ciphers lt cipher type gt Consult the product documentation for specific details on the cipher types that are compatible with CCKM Enter the SSID sub configuration mode infra ap config if ssid lt ssid_name gt Set the authentication infra ap config if ssid authentication network eap lt eap group gt Set the authentication key management infra ap config if ssid authentication key management wpa cckm optional Use the wpa keyword only if you are using WPA If this is the case the wpa keyword must precede the cckm keyword The optional keyword tells the access point to allow legacy clients that do not support CCKM onto the network Without the optional keyword only client devices that support CCKM are allowed onto the network When Using Multiple Encryption Types or VLANs Step 1 Step 2 Step 3 Step 4 Step 5 If you are using multiple encryption types or VLANs on the access points follow these steps to configure the access points to use CCKM Gain control of the access point command line interface and enter configuration mode Enter the interface configuration mode for the appropriate radio Interface dot11Radio 0 corresponds to the 802 11b g radio and Interface dot 1Radio I corresponds to the 802 1 1a radio infra ap config interface dot11lRadio lt 0 1 gt Set the cipher type for the VLAN interface infra ap config if encryption vlan lt vlan number gt mode ciphers lt cip
26. complete Some additional optional tasks are recommended Configuring the CiscoWorks WLSE advanced discovery options Configuring the CiscoWorks WLSE automatic configuration options Cisco Structured Wireless Aw are Netw ork SWAN Implementation Guide o arara _Cisco Structured Wireless Aw are Network SWAN Implementation Guide Implementing the Cisco SWAN Framework W Configuring Advanced Discovery Options Advanced discovery options include enabling device reverse DNS name resolution device auto manage and auto manage filtering by MAC address The format for device name within the WLSE can also be configured Advanced discovery parameters are configured through CiscoWorks WLSE interface found in Devices gt Discover under the Discover gt Advanced Options in the table of contents on the left hand side Consult the CiscoWorks WLSE online help for details on using these advanced discovery options The most useful of these options may be the auto manage option By default when devices are discovered by the CiscoWorks WLSE they are placed into a New state until the WLAN administrator Manages the devices in the CiscoWorks WLSE While in the New state the devices are not interrogated by the WLSE and cannot be configured The default discovery behavior can be overridden so that the CiscoWorks WLSE automatically manages the devices instead of placing them into the New state When the auto manage feature is used WDS devices a
27. cussion of deployment and theory of operations of the Cisco SWAN radio management tools is beyond the scope of this document This section focuses on the minimal steps required to prepare the system for Cisco SWAN radio management tools Cisco Structured Wireless Aw are Netw ork SWAN Implementation Guide E OL 6217 01 _Cisco Structured Wireless Aw are Network SWAN Implementation Guide Implementing the Cisco SWAN Framework W Preparing to Use Cisco SWAN Radio Management The procedures required before using the Cisco SWAN framework radio management features are as follows Discover infrastructure access points and WDS devices Import building floorplans Place access points on the floorplans Configure antenna and other access point specific parameters optional The process for completing the infrastructure access points and WDS devices discovery phase have already been covered in this document To import building floorplans log into the CiscoWorks WLSE and navigate to Location Manager Make sure the correct java run time environment JRE is installed by checking the JRE version message on the window When the system launches launch the Location Manager If no building floorplans have been imported a pop up window appears reminding you to import a building Select Yes to access the Building Tool see Figure 14 Figure 14 Building Tool Pop Up Window 2 No building Toor information found Do you wish to add a
28. d client layer WDS is implemented in supporting versions of Cisco IOS for the Cisco Aironet 1100 and 1200 series access points and on the special Cisco IOS running on the wireless LAN service module for the Catalyst 6500 switch platform The solution architecture dictates whether to use the WDS access point or the WLSM implementation The infrastructure access point layer facilitates WLAN client access to the wired network radio downlink encryption and radio management data collection including on going radio monitoring The client layer includes all wireless clients Advanced SWAN framework features take advantage of client side capabilities to allow for radio measurement collection from the WLAN clients and fast secure roaming Cisco Structured Wireless Aw are Netw ork SWAN Implementation Guide Te _Cisco Structured Wireless Aw are Network SWAN Implementation Guide Cisco SWAN Framework Overview Mil Figure 2 represents a logical hierarchical view of the SWAN framework that clearly illustrates the importance of the WDS layer Figure 2 Cisco SWAN Logical View WLAN control domain 127430 ay WDS are configured to run on a supporting device either a Cisco Aironet 1100 or 1200 for a Layer 2 architectural solution or the WLSM for an switch based Layer 3 solution In both cases infrastructure access points register with the WDS using special WLCCP messages Once registered the infrastructure
29. e from his AAA Client AAA Client Heetrame a p Log Update Warchdog Packers from this AAA Chent The AAA Cites Homname is the name maged to Log RADIUS Tunnete Packets Fom this AAA the AAA cirt Chess ttf Racik to Topl Replace RADIUS Port izfo wth Urernarse from the SAA Cheat AAA Client IP Adh ess The AAA Chert IP Addeese is the IP addrese aisgned to the AAA chem E hoolt ocroti sorted Repeat Steps 2 through 7 for each WDS host device Restart the CiscoSecure ACS service by selecting Submit Restart after completing the tasks through Step 7 Or you can select System Configuration on the left hand side menu then Service Control and then Restart Adding Username and Passw ord Credentials Step 1 Step 2 Step 3 Each infrastructure access point presents a username and password to the WDS when it authenticates These credentials must be defined on the CiscoSecure ACS and do not have to be unique per infrastructure access point Most implementations use a single username and password credential pair for all of the infrastructure access points To add the username and password credentials into the CiscoSecure ACS follow these steps Log into the CiscoSecure ACS server Select User Setup on the left hand side menu see Figure 7 Enter a username in the User field then select Add Edit see Figure 7 Cisco Structured Wireless Aw are Netw ork SWAN Implementation Guide a Te _Cisco Structu
30. ed on an access point or on the WLSM Hardw are Components The hardware required to implement the Cisco SWAN framework includes WDS hosting devices infrastructure access points and the CiscoWorks WLSE Optional hardware components include WLAN client devices Cisco Aironet client adapters and devices certified as part of the Cisco Compatible Extensions program WDS Host Devices WDS can be hosted on an access point or on the WLSM WDS is supported on the Cisco Aironet 1100 and 1200 series IOS based access points for the access point based WDS solution WDS is supported on the WLSM for the switch based WDS solution Infrastructure Access Points Infrastructure access points register with the WDS within the WLAN control domain The Cisco Aironet 350 1100 and 1200 series IOS based access points are supported as infrastructure access points in the access point based WDS solution Cisco Aironet 1100 and 1200 series IOS based access points are supported as infrastructure access points in the switch based WDS solution Cisco Structured Wireless Aw are Netw ork SWAN Implementation Guide a OL 6217 01 _Cisco Structured Wireless Aw are Network SWAN Implementation Guide Implementing the Cisco SWAN Framework W Cisco Wireless LAN Solution Engine CiscoWorks WLSE WLAN Client Devices The CiscoWorks WLSE is a management tool that provides comprehensive WLAN device management including access point configuration fault management
31. entications and encryption keys within the 802 1X EAP authentication framework Significant problems arise from handling the re authentication of WLAN clients as they move associations from one access point to another and in generating dynamic encryption keys for these clients As clients roam re authentication and dynamic key generation are fast so that service disruption does not occur and WLAN client and network integrity and security are maintained Cisco has addressed the challenge of fast secure roaming within the Cisco SWAN framework by defining a key management scheme called CCKM CCKM works when an 802 1X with EAP authentication scheme is in place as long as the client device supports it The basic concept is that the WDS maintains context awareness of all MNs within its WLAN control domain The WDS proxies initial authentication transactions with the RADIUS server and manages a master set of encryption keys The MN generates the same set of encryption keys independently after initial authentication When the MN roams to a new access point within the WLAN control domain the WDS can vouch for the MN on the new access point and generate new encryption keys for the access point to use The MN independently generates the same new encryption keys when it roams The MN can thus roam seamlessly within the WLAN control domain CCKM includes protections against common attack vectors like spoofing replay attacks or man in the middle attacks This
32. epiyan ery select Pe desined entry Change the rxbedas fadds bekes chching on modiy button Acdrers teld s an tewbng estry cornot be mod ed To telete as Bry Sean Peo dased potry beker choking ga the Delete buton 127155 Select Device Credentials gt Telnet SSH User Password from the table of contents on the left hand side see Figure 10 Enter the appropriate Telnet or SSH credentials for logging in to the managed access points for configuration see Figure 10 Consult the CiscoWorks WLSE online help for details on Telnet or SSH credentials entry syntax oL 6217 01 Cisco Structured Wireless Aware Network SWAN Implementation Guide gy Cisco Structured Wireless Aw are Network SWAN Implementation Guide W implementing the Cisco SWAN Framework Figure 10 CiscoWorks WLSE Telnet SSH Credentials Entry BY les aa Ae EAEC ALAARA ERD CEA Boa re Overview Melp Abest Logout wee OA LR 2004 Bee 127142 Step7 Select Device Credentials gt WLCCP Credentials from the table of contents on the left hand side see Figure 11 Step8 Enter the appropriate WLCCP credentials for logging in to the managed access points for configuration see Figure 11 Consult the CiscoWorks WLSE online help for details on WLCCP credentials entry syntax Figure 11 CiscoWorks WLSE WLCCP Credentials Entry Di rer AN SO ref ad eo Biomed tron tert 127143 The required elements of the initial CiscoWorks WLSE setup are now
33. g the Catalyst Supervisor 720 to support the Cisco SWAN switch based WDS solution This section covers only the basics of configuration More extensive discussions are available at http www cisco com go swan The required configuration tasks for the Supervisor 720 are as follows Configure a VLAN between the supervisor and WLSM Configure the multi point GRE tunnel interfaces Configure SNMP communities Follow these steps to complete the tasks Gain access to the supervisor command line interface and enter configuration mode OL 6217 01 Cisco Structured Wireless Aware Network SWAN Implementation Guide gy Cisco Structured Wireless Aw are Network SWAN Implementation Guide E implementing the Cisco SWAN Framework Step2 Create the VLAN between the supervisor and WLSM sup 720 config interface Vlan lt vlan number gt sup 720 config int ip address lt ip address gt lt network mask gt sup 720 config int exit Step3 Define the VLAN created in step 2 as the VLAN between the supervisor and WLSM sup 720 config wlan module lt wlsm module number gt allowed vlan lt vlan number gt The WLSM module number corresponds to the slot in which the WLSM resides The vlan number is the number of the VLAN created in Step 2 Step4 Create a loopback interface to serve as a tunnel source sup 720 config interface Loopback lt Loopback number gt sup 720 config int ip address lt ip address gt lt ne
34. g the CiscoSecure ACS Server for Infrastructure Authentication To use the CiscoSecure ACS server for infrastructure authentication you must complete the following tasks Cisco Structured Wireless Aw are Netw ork SWAN Implementation Guide a OL 6217 01 _Cisco Structured Wireless Aw are Network SWAN Implementation Guide Implementing the Cisco SWAN Framework W Define each WDS host as a network access server NAS Define credentials to be used by infrastructure access points for authentication To define each WDS host as a NAS on the CiscoSecure ACS follow these steps Step1 Log into the CiscoSecure ACS server Step2 Select Network Configuration from the menu on the left hand side see Figure 5 Step3 Under the AAA Clients section select Add Entry see Figure 5 Figure 5 CiscoSecure ACS NAS Setup a E E pine g ok y ee ae ae mar gt Bisse 1 4 2D00vindiecd bere rw Network Configuration a Adding Network Device G AAA Cheats 2 Tanaina Neteatk Device Gree AAA Chem AMA Chew IP Anthennicace Deleeng a Netrosk Devre Groep A ess Seoecheng for Network Dwvucex AAA Client 10 10 0 10 Adding 2 AAA Chieu 2 AAA Chet 10243 10 e Peleapg a ANA LPer AAA Stivers Se Eding a AAA Server DeieSnge a AAA Enver Proxy Ditt otioa Isble Adding 3 Proxy Ihrtdurioa Table Entry AAA Servers Sertmg Proxy Dertetbutan Table Fute F nng Prosv Pumdonoa Table Brey AAA Sever
35. her type gt Consult the product documentation for specific details on the cipher types that are compatible with CCKM Enter the SSID sub configuration mode infra ap config if ssid lt ssid_name gt Set the VLAN for the SSID infra ap config if ssid vlan lt vlan number gt Cisco Structured Wireless Aw are Netw ork SWAN Implementation Guide a OL 6217 01 _Cisco Structured Wireless Aw are Network SWAN Implementation Guide Step 6 Implementing the Cisco SWAN Framework W The VLAN number corresponds to the VLAN number configured in Step 3 Set the authentication infra ap config if ssid authentication network eap lt eap group gt Set the authentication key management infra ap config if ssid authentication key management wpa cckm optional Use the wpa keyword only if you are using WPA If this is the case the wpa keyword must preceed the cckm keyword The optional keyword tells the access point to allow legacy clients that do not support CCKM onto the network Without the optional keyword only client devices that support CCKM are allowed onto the network The CiscoWorks WLSE template configuration tool is used to perform these tasks in bulk Configuring ACU to use CCKM Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 The steps for configuring CCKM on the WLAN client device is dependent on vendor implementation This document covers the steps for Cisco Aironet client
36. ig ip domain name lt ip domain name gt wds ap config crypto key generate rsa general keys modulus lt key size gt Enter the following to turn off Telnet optional step define an access control list and apply it to the Telnet lines Obviously several access control list definitions can accomplish this task but the following is an example wds ap config access list lt access list number gt permit tcp any any neq telnet wds ap config line 0 16 wds ap config line access class lt access list number gt Enter the following to define AAA parameters for infrastructure authentication wds ap config aaa new model wds ap config radius server host lt ip address gt auth port lt auth port gt acct port lt acct port gt key lt shared secret gt wds ap config aaa group server radius wlccp_infra wds ap config sg radius server lt ip address gt auth port lt 1812 gt acct port lt 1813 gt wds ap config aaa authentication login infrastructure authentication group radius wds ap config aaa authentication login client authentication group radius If using a local RADIUS server on an access point the authentication port is always 1812 and the accounting port is always 1813 Cisco Structured Wireless Aw are Netw ork SWAN Implementation Guide a OL 6217 01 _Cisco Structured Wireless Aw are Network SWAN Implementation Guide Step 8 Step 9 Step 10 Step 11 Implementing the Cisco SW
37. ional process in which a WLAN client walks the coverage environment associating with access points and collecting specific data for the system to use in radio coverage calculations The client walkabout can be completed as a step in the assisted site survey tool or through the Radio Manager gt Client Walkabout interface A good client walkabout requires a thorough walkthrough of the coverage environment ideally in a grid pattern Data points are gathered symmetrically across the coverage environment If the client walkabout procedure cannot meet these basic requirements you should not do one Radio monitoring is a process in which infrastructure access points and optional authenticated and associated WLAN clients regularly sample the RF environment during normal operations The sampled data is gathered by the WDS aggregated and passed to the CiscoWorks WLSE Radio monitoring data is used in coverage calculations rogue access point detection and radio interference detection Radio monitoring is required for rogue access point detection interference detection self healing and assisted site re survey Radio monitoring options are configured through the interface at Radio Manager gt Radio Monitoring Both serving and non serving channels configure access points for radio monitoring The serving channel is the normal operating channel for the access point It is the channel on which associated WLAN clients are served When configured to monitor n
38. ks Telnet or SSH Configuration of access points via remote command line interface The CiscoWorks WLSE requires the following credentials to successfully communicate with WLAN devices in the network WLCCP credentials for initial authentication of the WLSE by the WDS hosts SNMP read only and read write communities Telnet or SSH credentials Cisco Structured Wireless Aw are Netw ork SWAN Implementation Guide Yi B OL 6217 01 _Cisco Structured Wireless Aw are Network SWAN Implementation Guide Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Implementing the Cisco SWAN Framework W To configure the necessary credentials on the CiscoWorks WLSE follow these steps Log into the CiscoWorks WLSE Navigate to Devices gt Discover Select Device Credentials on the left hand side table of contents see Figure 9 Select SNMP Communities on the left hand side table of contents see Figure 9 In the form enter the appropriate SNMP credentials Consult the CiscoWorks WLSE online help for details on SNMP credential entry syntax Figure 9 CiscoWorks WLSE SNMP Community Entry Screen SD Wife ened So el oen Sorel td eth faz oer De GH yo Ferrie ob iwo m ENO 2d Nimen PPE m Qe oy Wireless LAN Solution Engine Goaralen 4 Hole Abas pene Venere Read Corvrenty aet ie owed v ID cregreatert m Witte Ci Wate Te add an emery edt ishidan Eels and chick on Add beian To r
39. less awareness into important elements of the network infrastructure providing the same level of security scalability reliability ease of deployment and management for wireless LANs that organizations have come to expect from their wired LANs The Cisco SWAN framework addresses two key issues with managing and operating WLANs fast secure WLAN client roaming and radio management Fast secure roaming allows WLAN clients to move association from one access point to another with little or no service disruption Cisco SWAN radio management characterizes the radio transmission environment and responds to the conditions of the environment The Cisco SWAN framework can be visualized as a layered model The Cisco SWAN framework layers are Management Layer Wireless Domain Services Layer Infrastructure Access Point Layer e Wireless Client Layer OL 6217 01 Cisco Structured Wireless Aware Network SWAN Implementation Guide gy Cisco Structured Wireless Aw are Network SWAN Implementation Guide HZ Cisco SWAN Framework Overview The Cisco SWAN framework introduces WLCCP to facilitate control messaging between the framework components Figure illustrates the conceptual model of the Cisco SWAN framework including the WLCCP messaging protocol As shown in Figure 1 each layer is implemented in specific Cisco products Figure 1 Cisco SWAN Layers CiscoWorks Wireless LAN Solution Engine WLSE Manageme
40. n Guide W implementing the Cisco SWAN Framework Step 9 Step 10 Select the profile you created or edited in Steps 2 through 8 Enter whatever security credentials are required to authenticate to the network and complete the authentication and association process Consult the product documentation for details on using CCKM with non Cisco branded client adapters or third party supplicants Cisco SWAN Radio M anagement Features The Cisco SWAN framework includes a rich feature set for managing the radio transmission medium The Cisco SWAN framework provides mechanisms for gathering radio management data from the system as illustrated in Figure 13 Figure 13 Cisco SWAN Framework Radio Management Radio management tools processing RM data Aggregated radio measurements encapsulated in WLCCP RM frames Radio measurements encapsulated in WLCCP RM Radio measurements encapsulated in WLCCP RM frames 127145 Infrastructure access points and optional wireless clients gather radio data from the environment Data is gathered and aggregated by the WDS and then collected by the CiscoWorks WLSE for intelligent processing The CiscoWorks WLSE uses data to calculate optimal transmit power and channel settings both initially and on an on going basis automatically diagnoses when an access point radio stops working properly detects radio interference and detects and locates rogue access points An extensive dis
41. n Guide a OL 6217 01 _Cisco Structured Wireless Aw are Network SWAN Implementation Guide Implementing the Cisco SWAN Framework W Validating the Configuration The IOS command line on the WDS host can be used to validate the configurations To validate the WDS configuration enter this command show wlccp wds ap All of the registered access points and infrastructure access points are listed For example wds ap show wlccp wds ap MAC ADDR IP ADDR STATE LIFETIME 000d 28f2 33ea 10 1 12 19 REGISTERED 171 000d 28f2 3426 10 1 12 23 REGISTERED 173 000d 28f2 3436 10 1 12 22 REGISTERED 183 000c 8576 326e 10 1 12 18 REGISTERED 497 To validate that the CiscoWorks WLSE is correctly registered enter this command show wlccp wnm status The CiscoWorks WLSE IP address is listed and Security Keys Setup appears in the Status field wds ap show wlccp wnm status WNM IP Address 172 20 98 221 Status SECURITY KEYS SETUP Switch Based WDS Solution Configuration In this section the configuration tasks required to configure the switch based WDS solution are covered These tasks include the following Configuring the Catalyst 6500 Supervisor 720 Configuring the WDS on the WLSM module Configuring the infrastructure access point Managing the access points with the CiscoWorks WLSE Validating the setup Configuring the Catalyst 6500 Supervisor 720 Step 1 This section is not an extensive discussion on configurin
42. nd WLSE negotiate encryption keys to secure future WLCCP transactions OL 6217 01 Cisco Structured Wireless Aware Network SWAN Implementation Guide gy Cisco Structured Wireless Aw are Network SWAN Implementation Guide E implementing the Cisco SWAN Framework When the encryption key negotiations are complete the WDS reports all its registered infrastructure access points to the CiscoWorks WLSE for management After the infrastructure access points are managed on the CiscoWorks WLSE the CiscoWorks WLSE interrogates the infrastructure access points with SNMP to complete its internal inventory tables After the interrogation is complete the Cisco SWAN framework is totally constructed and other advanced features are used The following is a check list for implementing the Cisco SWAN framework for the access point basednWDS solution Configure the AAA server for infrastructure authentication Configure the AAA server for WLAN client authentication Prepare the CiscoWorks WLSE for managing the WLAN devices Configure the WDS access point s Configure the infrastructure access points The following is a check list for implementing the Cisco SWAN framework for the switch based WDS solution Configure the AAA server for infrastructure authentication Configure the AAA server for WLAN client authentication Prepare the CiscoWorks WLSE for managing the WLAN devices Configure the WLSM Configure the infrastr
43. new building using Building Tool yes mo 127146 If some buildings have already been imported you can access the Building Tool by right clicking on the All Locations root see Figure 15 of the navigation tree in the upper left hand navigation pane of the Location Manager Figure 15 Right Clicking on All Locations Servet Cit Vew Hoga Tools Wirard Ihip Hav Opon Waws Mi Leeatens unman Y Manses Arcoss Pons 0 Arye Nures 0 abot Alsons 0 Mino Alsons 9 WewMode Suna E xj Char Fite 127147 Conrectes ta 10 222 Edt Locators Disatied OL 6217 01 Cisco Structured Wireless Aware Network SWAN Implementation Guide gy Cisco Structured Wireless Aw are Network SWAN Implementation Guide Implementing the Cisco SWAN Framework When the building tool is open follow the wizard steps to create a new building and import floorplans for each of the building floors Consult the CiscoWorks WLSE online help for assistance if necessary When the buildings are created and floorplans are imported managed access points are visible in the lower left hand pane of the Location Manager Drag and drop the access points to the appropriate locations on the floors Accurate access point placement is important because the CiscoWorks WLSE radio management tools use the Location Manager access point positions as a reference when making internal computations As an optional step access point antenna par
44. nt Layer intelligent Radio and Network Management AAA Services CiscoSecure Access Control Server or equivalent Wireless Dornain Services Layer WLAN Client Context Tracking Fast Secure Roaming Radio Management Data Aggregation Wireless LAN Services Module WLSM Cisco Aironet 1100 or 1200 Infrastructure Access Poinls Layer WLAN Client Access Radio Downlink Encryption RF Management Data Collection and RF Monitoring Cisco Aironet 350 running 10S 1100 or 1200 EEN Wireless LAN Context biin Control Protocol WLOCP Cisco Aironet 350 CB20A CB21ABG Client Layer WLAN Clients Radio Management Data Collection RF Monitoring Cisco Compatible Extentions 141 127 The management layer supplies the processing of RM data from the lower layers controlling and managing the radio coverage environment This data is also used for securing the radio coverage environment by detecting rogue access points and wireless clients Authentication Authorization and Accounting AAA services are also placed in the management layer The required management layer component is the CiscoWorks WLSE An optional component is the CiscoSecure ACS Other products with functionality equivalent to ACS may be used in Cisco SWAN The WDS layer provides critical services WLAN client context awareness fast secure roaming and aggregation of radio management data from the infrastructure access point an
45. on serving channels the access point periodically jumps off the serving channel to sample a non serving channel before resuming normal WLAN client traffic processing Non serving channel radio monitoring typically only has a minimal impact on normal WLAN data traffic Cisco SWAN framework radio monitoring can also include WLAN clients that support the radio management features These clients include Cisco Aironet client adapters and WLAN client adapters certified to the version 2 Cisco Compatible Extensions specification When WLAN client monitoring is Cisco Structured Wireless Aw are Netw ork SWAN Implementation Guide Em OL 6217 01 _Cisco Structured Wireless Aw are Network SWAN Implementation Guide Implementing the Cisco SWAN Framework W enabled the WDS periodically requests radio measurement data from supporting registered MNs These MNs collect the requested data and send it to the WDS The WDS aggregates data from the MNs and passes the aggregated data to the CiscoWorks WLSE WLAN client monitoring is configured for client serving and non serving channels After the initial RF environment characterization with the access point radio scan is complete either as part of or independent of the assisted site survey and radio monitoring is configured WLAN self healing and assisted site re survey are enabled on the CiscoWorks WLSE and some interesting features are used in the Location Manager Use Radio Manager gt Self Healing
46. on the access point The necessary tasks are as follows Define SNMP communities Enter a host name for the access point Define Telnet or SSH parameters Define WLCCP credentials Define the WLSM as the WDS Follow these steps to complete the tasks Log into the access point command line interface and enter configuration mode Enter the following commands to define the SNMP communities infra ap config snmp server view iso iso included infra ap config snmp server community lt read only community gt view iso RO infra ap config snmp server community lt read write community gt view iso RW Enter a host name for the access point infra ap config hostname lt hostname gt Enter the following to define Telnet or SSH users infra ap config username lt username gt password lt password gt Enter the following to enable SSH optional step infra ap config ip domain name lt ip domain name gt infra ap config crypto key generate rsa general keys modulus lt key size gt Enter the following commands to turn off Telnet optional step define an access control list and apply it to the Telnet lines Obviously many access control list definitions can accomplish this task but the following is an example infra ap config access list lt access list number gt permit tcp any any neq telnet infra ap config line 0 16 infra ap config line access class lt access list number gt Enter
47. onfiguration mode AAA ap config radsrv nas lt wds host ip address gt key lt shared secret gt Each infrastructure access point presents a username and password to the WDS when it authenticates These credentials must be defined on the local RADIUS server and do not have to be unique per infrastructure access point Most implementations use a single username and password credential pair for all of the infrastructure access points To add the username and password credentials into the local RADIUS server enter the following command while in local RADIUS configuration mode for each username and password credential pair AAA ap config radsrv user lt username gt password lt password gt Exit configuration mode and save the configuration to NVRAM Configuring the AAA Server to Support WLAN Client Authentication The configuration steps required to configure client authentication depending on authentication requirements for the WLAN client A discussion of WLAN client authentication and configuration is beyond the scope of this document Consult product documentation and other resources available from http www cisco com for the details of WLAN client authentication configuration Preparing the CiscoW orks WLSE for M anaging WLAN Devices The CiscoWorks WLSE uses three methods to communicate with WLAN devices in the network WLCCP Control transactions with the WDS hosts SNMP Interrogation of all WLAN devices and some configuration tas
48. onfiguration tasks required to set up an access point to operate as a WDS host Note This solution requires one WDS access point per IP subnet OL 6217 01 Cisco Structured Wireless Aware Network SWAN Implementation Guide gy Cisco Structured Wireless Aw are Network SWAN Implementation Guide E implementing the Cisco SWAN Framework Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 These are the basic configuration tasks Entering a host name for the access point Defining SNMP communities Defining Telnet or SSH parameters Defining AAA parameters for infrastructure authentication Defining AAA parameters for WLAN client authentication Defining WLCCP credentials Enabling WDS services Defining the CiscoWorks WLSE Follow these steps to complete the tasks Log into the access point command line interface and enter the configuration mode Enter a host name for the access point wds ap config hostname lt hostname gt Enter the following commands to define the SNMP communities wds ap config snmp server view iso iso included wds ap config snmp server community lt read only community gt view iso RO wds ap config snmp server community lt read write community gt view iso RW Enter the following to define Telnet or SSH users wds ap config username lt username gt password lt password gt Enter the following to enable SSH optional step wds ap conf
49. re automatically managed The CiscoWorks WLSE and WDS negotiate encryption keys and the WDS automatically reports all of its registered infrastructure access points to the CiscoWorks WLSE The CiscoWorks WLSE automatically manages these infrastructure devices too Using Automatic Configuration Step 1 Step 2 Access points can be automatically configured by using the automatic configuration options in the CiscoWorks WLSE As access points are automatically managed a configuration template is applied to devices The basic steps to use the automatic configuration features are Create a basic configuration template s through the Configure gt Templates interface on the CiscoWorks WLSE Define the template s as an auto manage template and specify filtering criteria through the Configure gt Auto Update interface on the CiscoWorks WLSE A detailed discussion on using the auto configuration features of the CiscoWorks WLSE is beyond the scope of this document Consult the CiscoWorks WLSE online help for more details on using these features Access Point Based WDS Solution Configuration This section explains the configuration tasks required to configure the access point based WDS solution such as the following Configuring the WDS access point Configuring the infrastructure access point e Managing the access points with the CiscoWorks WLSE Validating the setup Configuring the WDS Access Point AS This section explains the c
50. red Wireless Aw are Network SWAN Implementation Guide Figure 7 3 Cine seit AO Aertel vier ret EET CiscoSecure ACS User Setup te bk ter Fromm Dok ye t OTET MPO bak KA tss beas ser Setup ci fae m z nar Biain aare Emine s Spesi User in the CiareSerue Urer Database alzar o Ading 3 Uter to the CiscaSenue Ures Databare Linz Usememes thet Begia vah Particslar ay lame A Usermasaes in the CincaSeoue Ures Changing a Ueewpetee is de CjeraSeciwe User E En Database Ther Senp caadles poe to contigure minyhul wier EAR jali vad shormabon add coer and delata utect the Slize data are Uoer Seoup and External User Databaces Before Cisco Secure ACS san sabener ane seers webs an external ure databace o You roon hase De databare up aad maneme on te otera serwer For exanple Epos at uag loken rebate your token caror pean be eancwg aed propedy corkgeed o Yos rout base conkigured the appbeable z O rore Implementing the Cisco SWAN Framework W Step4 Fill out the information relevant to the user including the password and then click Submit see Figure 8 Figure 8 CiscoSecure ACS User Setup CEEA ANE ES ere fe i we Fats tak b J Grape s 5 a amande toe 7 as EPE sh A Cece frandas User Setup EEA v a ver wleep_user l PE ry APOE o 7 MED Uts S q 7 a err Alan Pasrwoed Arterscatre CacoSeore Orwhsse we FAP
51. res 33 Preparing to Use Cisco SWAN Radio Manage Cisco SWAN Radio M anagement Features Conclusion 37 31 ment 35 34 30 18 28 78 XXXXX XX Book Title E E Contents Book Title a 78 XXXXX XX l Audience Cisco Structured Wireless Aw are Netw ork SWAN Implementation Guide The Cisco Structured Wireless Aware Network SWAN provides the framework to integrate and extend wired and wireless networks to deliver the lowest possible total cost of ownership for companies deploying wireless LANs WLANs Cisco SWAN extends wireless awareness into important elements of the network infrastructure providing the same level of security scalability reliability ease of deployment and management for wireless LANs that organizations have come to expect from their wired LANs This document provides a brief technical synopsis of the Cisco SWAN framework and functionality and provides details on implementing the solution The audience for this document is Cisco Systems Engineers Consulting Systems Engineers Product Sales Specialists and Cisco customers implementing and evaluating the Cisco SWAN framework This document is not an extensive theoretical discussion on the Cisco SWAN framework it is intended as a reference to outline the implementation procedures for selected Cisco SWAN components features and capabilities For a detailed review of Cisco SWAN features and benefits read the Cisco SWAN brochure at h
52. riority the tie breaker is the highest value FastEthernet MAC address of the competing access points The active WDS should always be configured with priority value 255 Enter the following command to define the WLCCP credentials for the access point wds ap config wlccp ap username lt wlccp_username gt password lt password gt The WDS host access point is now registered with the WDS service and serves as an infrastructure access point Define the CiscoWorks WLSE on the WDS access point wds ap config wlccp wnm ip address lt wlse ip address gt Subsequent to these steps customers can configure additional parameters like VLANs SSIDs and encryption settings Customers may choose to use the CiscoWorks WLSE to do these configurations in bulk after the CiscoWorks WLSE has discovered the WDS host and the infrastructure access points Configuring the Infrastructure Access Point Step 1 Configuring the infrastructure access point is much simpler than configuring the WDS access point The necessary tasks are as follows Define SNMP communities Enter a host name for the access point Define Telnet SSH parameters Define WLCCP credentials Follow these steps to complete the tasks Log into the access point command line interface and enter configuration mode OL 6217 01 Cisco Structured Wireless Aware Network SWAN Implementation Guide gy Cisco Structured Wireless Aw are Network SWAN Implementation Guide
53. s point based WDS solution The Layer 3 architecture leverages WLSM based WDS and is called the switch based WDS solution OL 6217 01 Cisco Structured Wireless Aware Network SWAN Implementation Guide gy Cisco Structured Wireless Aw are Network SWAN Implementation Guide HZ Cisco SWAN Framework Overview Figure 3 shows the access point based WDS solution Figure 3 Access Point Based WDS Solution RADIUS Control 4 WLECP Messages Be Messages ACS f WLAN Control a WLAN Control Domain Domain A n WLCCP Messages 127149 In the access point based WDS solution infrastructure access points discover the WDS via special WLCCP multicast messages You must have an access point running WDS on each Layer 2 subnet The solution supports up to 30 infrastructure access points when the WDS host access point is also serving wireless clients and up to 60 infrastructure access points when the WDS host access point is not serving wireless clients The access point based WDS solution facilitates seamless MN roaming across a Layer 2 WLAN control context Figure 4 shows the switch based WDS solution Cisco Structured Wireless Aw are Netw ork SWAN Implementation Guide Te _Cisco Structured Wireless Aw are Network SWAN Implementation Guide Cisco SWAN Framework Overview W Figure 4 Switch Based WDS Solution ACS __ RADIUS Control S Messages a mGRE Tunnel Sea
54. scoWorks WLSE device discovery and management During the WDS activation phase the WDS service becomes active on its host device In the access point based WDS solution the WDS advertises itself via WLCCP broadcast messages on the access point management subnet In the infrastructure authentication and registration phase infrastructure access points present 802 1x credentials for authentication to the WDS After authentication WLCCP registration requests are issued to the WDS Cisco LEAP is currently the only supported authentication mechanism for infrastructure access point authentication 802 1x or EAP types are supported for WLAN client authentication In the access point based WDS solution the WDS is discovered by infrastructure access points by the WLCCP broadcast messages from the WDS In the WLSM based WDS solution infrastructure access points must be configured with the IP address of the WLSM After the infrastructure access points are registered with the WDS a WLCCP communication link is established between the WDS and the CiscoWorks WLSE The CiscoWorks WLSE IP address is configured on the WDS hosting device The WDS device attempts to contact the CiscoWorks WLSE with WLCCP messages this is how the CiscoWorks WLSE discovers the WDS device After the WLAN administrator manages the WDS device within the CiscoWorks WLSE the CiscoWorks WLSE presents credentials for authentication to the WDS After the authentication is completed the WDS a
55. the Cisco SWAN Framework You should also navigate to the Catalyst 6500 Supervisor command line interface and validate that the control communications between the WLSM and supervisor are correctly working Enter this command to take a general look at the status show mobility status Enter this command to show the slot location of the WLSM the LCP status tunnel information registered access points registered mobile nodes and important information about the tunnels sup720 show mobility status WLAN Module is located in Slot 1 HSRP State Not Applicable LCP Communication status up MAC address used for Proxy ARP 0008 2034 7400 Number of Wireless Tunnels 4 Number of Access Points 1 Number of Mobile Nodes 3 Wireless Tunnel Bindings Src IP Address Wireless Network ID Trusted Broadcast 10 100 1 1 1 No Yes 10 100 2 1 2 Yes Yes 10 100 3 1 3 Yes Yes 10 100 4 1 4 Yes No Enter the following command to show information about the registered access points show mobility ap The IP addresses MAC addresses and appropriate network identifiers for the registered access points are shown sup720 show mobility ap AP IP Address AP Mac Address Wireless Network ID 10 200 20 49 000b fcfb e836 4 Enter the following command to show information about registered client mobile nodes show mobility mn The MN MAC address MN IP address the IP address of the MN s current access point and the network identifier of the MN is shown
56. to configure self healing Consult the CiscoWorks WLSE online help for details on configuring self healing The assisted site re survey feature is configured through Radio Manager gt Assisted Re Site Survey The Location Manager features include radio coverage displayed as data rate and signal strength from both the access point and WLAN client perspective and rogue access point location OL 6217 01 Cisco Structured Wireless Aware Network SWAN Implementation Guide gy Cisco Structured Wireless Aw are Network SWAN Implementation Guide E implementing the Cisco SWAN Framework Cisco Structured Wireless Aw are Netw ork SWAN Implementation Guide EN OL 6217 01
57. ttp www cisco com en US products hw wireless ps430 prod_brochure09 186a0080184925 html Or visit the Cisco SWAN website http www cisco com go swan OL 6217 01 Cisco Structured Wireless Aware Network SWAN Implementation Guide gy Cisco Structured Wireless Aw are Network SWAN Implementation Guide WE Acroymns and Terms Acroymns and Terms Table 1 Acronyms Terms and Definitions Term Definition Cisco SWAN Cisco Structured Wireless Aware Network Cisco s framework for delivering integrated wired and wireless LAN networks WDS Wireless Domain Service Cisco IOS software functionality enabling advanced Cisco SWAN functionality WLCCP Wireless LAN Context Control Protocol A Cisco defined control protocol for Cisco SWAN RM Radio Management Access points participating in radio management scan the radio environment and send reports to the WDS device on such radio information as potential rogue access points associated clients client signal strengths and the radio signals from other access points AAA Authentication Authorization and Accounting A common acronym used to describe secure network access services CiscoWorks WLSE CiscoWorks Wireless LAN Solution Engine A component of the Cisco SWAN framework that provides many features for managing the wireless LAN including making configuration changes providing reports collecting radio monitoring and man
58. twork mask gt sup 720 config int exit Step5 Define the multi point GRE tunnel interface sup 720 config interface Tunnel lt Tunnel Number gt sup 720 config int ip address lt ip address gt lt network mask gt sup 720 config int ip helper address lt dhcp server address gt sup 720 config int ip dhcp snooping packets sup 720 config int tunnel source Loopback lt Loopback interface number gt sup 720 config int tunnel mode gre multipoint sup 720 config int mobility network id lt mobility group number gt sup 720 config int mobility trust sup 720 config int mobility broadcast sup 720 config int exit The tunnel source refers to the interface created in Step 4 The lt mobility group number gt defines the mobility group The same identifier is used on the infrastructure access points The mobility trust command is an optional command allowing WLAN clients with static IP addresses Without the mobility trust command these clients are denied access to the network The mobility broadcast command is an optional command that instructs the supervisor to forward broadcast traffic from one multi point GRE tunnel leg onto the other tunnel legs Without this command broadcast traffic is not forwarded Step6 Repeat Steps 4 and 5 for each desired mobility group Step7 Define the SNMP communities as follows sup 720 config snmp server community lt snmp read only community name gt RO sup 720 config
59. ucture access points The following three subsections provide the details for each of these tasks The first subsection focuses on the tasks common to both the access point based WDS architecture and the switch based WDS architecture The second subsection covers in detail the tasks required with the access point based WDS solution The third subsection covers in detail the tasks required with the switch based WDS solution Common Tasks The required tasks common to both the switch based and access point based WDS solutions are Configuring the AAA server to support infrastructure authentication Configuring the AAA server to support WLAN client authentication Preparing the CiscoWorks WLSE for managing WLAN devices Infrastructure authentication currently requires Cisco LEAP Typically customers use CiscoSecure ACS for LEAP authentication Both infrastructure and client authentication can use ACS In many customer environments AAA support for Cisco LEAP is not available for infrastructure authentication As an alternative for infrastructure authentication the local RADIUS server embedded in the access point IOS is used This document reviews the steps to configure the ACS and the local RADIUS servers on the access point for infrastructure authentication Other third party AAA products support Cisco LEAP and may be used for infrastructure authentication Configuration of third party AAA products is beyond the scope of this document Configurin
60. ure with Layer 2 WLAN control domains where WDS is hosted on Cisco Aironet access points Switch Based WDS Architecture The Switch Based WDS architecture is an architecture with Layer 3 WLAN control domains where the WDS is hosted on the WLSM mGRE Multipoint Generic Route Encapsulation A tunneling encapsulation type defined by IETF RFC that is leveraged by the Cisco SWAN framework switch based WDS solution CCKM Cisco Centralized Key Management A Cisco defined encryption key management scheme that enables fast secure roaming within a WLAN control domain 802 1 X EAP 802 1X is an IEEE defined mechanism for port access control and extensible authentication protocol EAP is an authentication protocol defined by IETF RFC EAP is generic enough to be implemented in a number of ways including Cisco LEAP EAP FAST PEAP EAP TLS and EAP TTLS The combination of 802 1X port access control and EAP authentication type is used to secure access to the WLAN Cisco LEAP A Cisco defined EAP type for secure access to the WLAN EAP FAST A Cisco defined EAP type for secure access to the WLAN ACU Cisco Aironet Client Utility ADU Cisco Aironet Desktop Utility Cisco SWAN Framework Overview Cisco SWAN provides the framework to integrate and extend wired and wireless networks to deliver the lowest possible total cost of ownership for companies deploying WLANs Cisco SWAN extends wire
Download Pdf Manuals
Related Search
Related Contents
取扱説明書 - マックス for your topload washer 15-702_Dual Sch Install12-18-01.p65 Philips DVP3160K/55 User's Manual Manuel d`utilisation Triomed RIDGID R8702B Use and Care Manual MZ-R410 Copyright © All rights reserved.
Failed to retrieve file