Home
Owner`s Manual (General)
Contents
1. Connect the shield to the terminal Utility cable i terminals DC link brake AT resistor terminals Motor cable Ja terminals gt aa Ground terminal gt Ground terminal Ch6CX6 Control cable Les pe Motor cable Utility cable Brake resistor cable Figure 6 1 4 13 Cable assembly for open chassis CX 0400 1000HP V 3 6 Page 50 84 Wiring Utility cable DC link brake Motor cable terminals resistor terminals L1 L2 L3 terminals U V W E l So Sate Eaei me Yellow Yellow green green protective protective cable cable Ground Ground terminal terminal Utility cable Ground terminal Motor cable for the control cable Figure 6 1 4 14 Cable assembly compact NEMA 1 CXS 0010 0030HP V 3 5 Page 51 84 Wiring DC link brake resistor terminals J Motor cable Utility cable tef gt Fn i 4 terminals minals F i TT U V W L1 L2 L3 v Yellow green protective cable Yellow gree protective cable Ground termi nal Motor ca Utility cable Control cable Control cable other relay outputs Figure 6 1 4 15 Cable assembly for
2. parameters 3 6 3 8 Example 24 RO gt 21 RO1 21 ROI 22 RO1 22 RO1 22 RO1 Figure 6 5 10 Output frequency 23 RO1 23 SO 23 RO1 supervision 3 14 Torque limit supervision value The calculated torque value to be supervised by parameter 3 13 3 15 Active reference limit supervision function 0 No supervision 1 Low limit supervision 2 High limit supervision If the reference value goes under over the set limit 3 16 this function generates a warning message via the digital output DO1 or via a relay output RO1 or RO2 depending on the settings of parameters 3 6 3 8 The supervised reference is the current active reference It can be source A or B reference depending on DIB6 input or panel reference if the panel is the active control source 3 16 Active reference limit supervision value The frequency value to be supervised by the parameter 3 15 3 17 External brake off delay 3 18 External brake on delay The function of the external brake can be delayed from the start and stop control signals with these parameters See figure 6 5 11 The brake control signal can be programmed via the digital output DO1 or via one of relay outputs RO1 and RO2 see parameters 3 6 3 8 3 19 Drive temperature limit supervision function 0 No supervision 1 Low limit supervision 2 High limit supervision If the temperature of the drive goes under over the set l
3. 3 1 Analog output function o See table on page 3 9 a Unfiltered signal 100 4 3 2 Analog output filter time 63 4 Filters the analog output signal See figure 3 5 17 t s gt Figure 3 5 17 Analog output Par 3 2 UDOO9K16 filtering 3 3 Analog output invert a 4 nalog Inverts analog output signal current max output signal minimum set 2 mA RJE a value DN min output signal maximum set GN i value Ssi E TTAN ORT Param 3 5 X N 50 LOMA pst NG SNS faite Sey a S Param 3 5 4mA Sea ee ae as Seed oe 3 1 Figure 3 5 18 Analog output invert oma RE gs sca 3 4 Analog output minimum Defines the signal minimum to be either 0 mA or 4 mA living zero See figure 3 5 19 3 5 Analog output scale Scaling factor for analog output See figure 3 5 19 daa output Signal Max value of the signal current Param sip Param ass UMATE Se Ra Se Output fre Max frequency p 1 2 j 7 quency Output 2 x laicx current a eee 8 MEA e ealan Motor speed Max speed n xf _ f Eager gent E S Motor torque 2x T mot YMA PTE e ER a E Motor power 2 x P Mot Motor voltage 100 xX V Mot Ret tN gen DC link volt 1000 V Max value of signal Par 3 4 0 selected by param 3 1 OmA t 4 gt 0 0 5 1 0 Ch012K18 Figure 3 5 19 Analog output scale Page 3 22 on ww b Multi step Speed Control Application Digital output function Relay output 1 function R
4. Code Parameter Range Step Default Custom Description Page 8 1 Automatic restart 0 10 1 0 0 Not in use 2 36 number of tries 8 2 Automatic restart multi 1 6000s 1s 30s 2 36 attempt maximum trial time 8 3 Automatic restart o 1 1 0 0 Ramp 2 37 start function 1 Flying start 8 4 Automatic restart of 0 1 1 0 0 No 2 37 undervoltage 1 Yes 8 5 Automatic restart of 0 1 1 0 0 No 2 37 overvoltage 1 Yes 8 6 Automatic restart of 0 1 1 0 0 No 2 37 overcurrent 1 Yes 8 7 Automatic restart of 0 1 1 0 0 No 2 37 reference fault 1 Yes 8 8 Automatic restart after 0 1 1 0 0 No 2 37 over undertemperature 1 Yes fault Table 2 5 1 Special parameters Groups 2 8 Page 2 14 Local Remote Control Application 2 5 2 Description of Groups 2 8 parameters 2 1 Start Stop logic selection 0 DIA1 closed contact start forward DIA2 closed contact start reverse See figure 2 5 1 A FWD Output Stop function frequency par 4 7 coasting DIAD et ease ef tele Seo ett eel Le oe UD009K09 Figure 2 5 1 Start forward Start reverse The first selected direction has the highest priority When DIA1 contact opens the direction of rotation starts to change If Start forward DIA1 and Start reverse DIA2 signals are active simultaneously the Start forward signal DIA1 has priority OVO
5. Pl control Application Code Parameter Range Step Default Custom Description Page 4 7 Stop function 0 1 1 0 0 Coasting 4 25 1 Ramp 4 8 DC braking current 0 15 1 5x 0 1A 0 5 x 4 25 Incx A Incx 4 9 DC braking time at Stog 0 00 250 00s 0 01s 0 00s 0 DC brake is off at Stop 4 25 4 10 Turn on frequency of 0 1 10 0 Hz 0 1 Hz 1 5 Hz 4 26 DC brake at ramp Stop 4 11 DC brake time at Start 0 00 25 00s 0 01 s 0 00 s 0 DC brake is off at Start 4 27 4 12 Jog speed reference fmin fmax 0 1 Hz 10 0 Hz 4 27 1 1 1 2 Group 5 Prohibit frequency parameters Code Parameter Range Step Default Custom Description Page 5 1 Prohibit frequency fmin 0 1 Hz 0 0 Hz 4 27 range 1 low limit par 5 2 5 2 Prohibit frequency fmin fmax 0 1 Hz 0 0 Hz 0 no prohibit frequency range 4 27 range 2 high limit 1 1 1 2 5 3 Prohibit frequency fmin 0 1 Hz 0 0 Hz 4 27 range 2 low limit par 5 4 5 4 Prohibit frequency fmin fmax 0 1 Hz 0 0 Hz 0 no prohibit frequency range 4 27 range 2 high limit 1 1 1 2 5 5 Prohibit frequency fmin 0 1 Hz 0 0 Hz 4 27 range 3 low limit par 5 6 5 6 Prohibit frequency fmin fmax 0 1 Hz 0 0 Hz 0 no prohibit frequency range 4 27 range 3 high limit 1 1 1 2 Group 6 Motor control parameters Code
6. Figure 3 5 34 Automatic restart Parameter 8 1 determines how many automatic restarts can be made during the trial time set by the parameter 8 2 The time counting starts from the first autorestart If the number of restarts does not exceed the value of the parameter 8 1 during the trial time the count is cleared after the trial time has elapsed The next fault starts the counting again Automatic restart start function The parameter defines the start mode 0 Start with ramp 1 Flying start see parameter 4 6 Automatic restart after undervoltage trip 0 No automatic restart after undervoltage fault 1 Automatic restart after undervoltage fault condition returns to the normal condition DC link voltage returns to the normal level Automatic restart after overvoltage trip 0 No automatic restart after overvoltage fault 1 Automatic restart after overvoltage fault condition returns to the normal condition DC link voltage returns to the normal level Automatic restart after overcurrent trip 0 No automatic restart after overcurrent fault 1 Automatic restart after overcurrent faults Page 3 36 Multi step Speed Control Application 8 7 Automatic restart after reference fault trip 0 No automatic restart after reference fault 1 Automatic restart after analog current reference signal 4 20 mA returns to the normal level gt 4 mA 8 8 Automatic restart after over undertemperature fault tri
7. CXS 0007 0010HP CXS 0011 0015HP Power loss W 100 CXS 0015 0020HP spent CXS 0022 0030HP CXS 0030 0040HP 3000 10000 Switching frequency Hz 16000 Figure 5 2 2f 1600 1400 N 8 1000 800 oe CXS 0150 0200HP CXS 0185 0250HP CXS 0220 0300HP Power loss W 600 Aim 400 200 10000 Switching frequency Hz 16000 Figure 5 2 2h 900 800 700 600 aa F De CXS 0040 0050HP amp 500 ee e CXS 0055 0075HP 40 gute CXS 0075 0100HP k 2 1 CXS 0110 0150HP a 300 Sr Fa 200 100 0 r 3000 10000 16000 Switching frequency Hz Figure 5 2 2g Figures 5 2 2 f h Power dissipation as a function of the switching frequency for 400V and 500V l variable torque Compact Nema 1 Page 26 84 Installation 3 6kHz 1OkHz T6kHz no derating no derating no derating modern 1 f 2 25 no deraing 5 notallowed_ o froderaing 8 rotates 7 CCC zt allowed e neeraing 8 rotallowed 125 150 175 no derang 14 not allowec 200 300 o CX CXL 0150 0200HP lyr 16 kHz CX CXL 0055 0075HP lyr 10 kHz CX CXL 0550 0075HP lyr 16 kHz 400 CX CXL 2 0600HP T3 6 kHz SNS CX CXL ane O600HP Table 5 2 3 Constant output curr
8. Setting value Signal content 0 Not used Out of operation Digital output DO1 sinks current and programmable relay RO1 RO2 is activated when 1 Ready The drive is ready to operate 2 Run The drive operates motor is running 3 Fault A fault trip has occurred 4 Fault inverted A fault trip has not occurred 5 CX overheat warning The heat sink temperature exceeds 70 C 6 External fault or warning Fault or warning depending on parameter 7 2 7 Reference fault or warning Fault or warning depending on parameter 7 1 if analog reference is 4 20 mA and signal is lt 4mA 8 Warning If a warning exists See Table 7 10 1 in the Users Manual 9 Reversed The reverse command has been selected 10 Jog speed Jog speed has been selected with digital input 11 At speed The output frequency has reached the set reference 12 Motor regulator activated Overvoltage or overcurrent regulator was activated 13 Output frequency supervision 1 The output frequency goes outside of the set supervision Low limit High limit par 3 9 and 3 10 14 Output frequency supervision 2 The output frequency goes outside of the set supervision Low limit High limit par 3 11 and 3 12 15 Torque limit supervision The motor torque goes outside of the set supervision Low limit High limit par 3 13 and 3 14 16 Reference limit supervision Reference goes outside of the set supervision Low limit High limit par 3 15
9. 0 DC brake is not used gt 0 DC brake is in use and its function depends on the Stop function param 4 7 and the time depends on the value of parameter 4 9 Page 4 25 Pl control Application Stop function 0 coasting After the stop command the motor will coast to a stop with the CX CXL CXS off With DC injection the motor can be electrically stopped in the shortest possible time without using an optional external braking resistor The braking time is scaled according to the frequency when the DC braking starts If the frequency is gt nominal frequency of the motor par 1 11 setting value of parameter 4 9 determines the braking time When the frequency is lt 10 of the nominal the braking time is 10 of the set value of parameter 4 9 Hz 4 fout Output frequency 0 1 xfn Motor speed DC braking ON a t 1x par 4 9 gt la t 0 1 x par 4 9 RUN RUN UD012K21 STOP STOP Figure 4 5 15 DC braking time when par 4 7 0 Stop function 1 ramp After the stop command the speed of the motor is reduced based on the deceleration ramp parameter if no regeneration occurs due to load inertia to a speed defined with parameter 4 10 where the DC braking starts r A H The braking time is defined fout Hz withparameter4 9 Motor speed T Sc th Output frequency If high inertia exists it is recommended to use an ext
10. 2 4 Basic parameters Group 1 2 4 1 Parameter table Parameter Range Default Custom Description Minimum frequency O fmax 0 Hz Maximum frequency fmin 120 500 Hz 60 Hz Acceleration time 1 0 1 3000 0 s 3 0s Time from fmin 1 1 to fmax 1 2 Deceleration time 1 0 1 3000 0 s 3 0s Time from fmax 1 2 to fmin 1 1 Source A reference signal o 4 1 0 Anal voltage input term 2 1 Anal current input term 4 2 Set reference from the panel 3 Signal from internal motor pot 4 Signal from internal motor pot reset if CX is stopped Source B reference signal 0 Anal voltage input term 2 1 Anal current input term 4 2 Set reference from the panel 3 Signal from internal motor pot 4 Signal from internal motor pot reset if CX unit is stopped Current limit 0 1 2 5XIncx 1 5 x Incx Output current limit A of the unit V Hz ratio selection 0 2 0 0 Linear 1 Squared 2 Programmable V Hz ratio V Hz optimization 0 1 0 None 1 Automatic torque boost Nominal voltage of the motor 180 690 V 230 V 380 V 480 V 575 V CX CXL CXS V 3 2 CX CXL CXS V 3 4 CX CXL CXS V 3 5 CXV36 Nominal frequency of the motor 30 500 Hz 60 Hz fn from the nameplate of the motor Nominal speed of the motor 1 20000 rpm 1720 rpm Nn from the namepla
11. A long filtering time makes the Unfiltered signal regulation response slower See figure 6 5 2 100 4 63 J t s gt Par 2 7 UD009K15 Figure 6 5 2 V signal filtering 2 8 Analog input I signal range 0 0 20 mA 1 4 20 mA 2 Custom signal span Page 6 17 Pump and fan control Application Analog input custom setting 0 minimum maximum NN With these parameters you can scale the input current signal lp signal range between 0 20 mA Minimum setting Set the signal to its minimum level select parameter 2 9 press the Enter button Maximum setting Set the signal to its maximum level select parameter 2 10 press the Enter button Note The parameter values can only be set with this procedure not with the arrow up arrow down buttons 2 11 Analog input I inversion Parameter 2 11 0 no inversion of l input Parameter 2 11 1 inversion of li input Unfiltered signal 100 4 2 12 Analog input I filter time Filters out disturbances from the Filtered signal incoming analog signal a a eee ae oe ree A long filtering time makes the regulation response slower See figure 6 5 3 t s gt Figure 6 5 3 Analog input l filter Par 2 12 i UD009K30 time 2 13 DIA5 function 1 External fault closing contact Fault is shown and motor is stopped when the input is active 2 External faul
12. Autorestart function Motor Thermal and Stall protection off warning fault programming 12 3 Local Remote Application Utilizing the Local Remote Control Application the use of two different control and frequency reference sources is programmable The active control source is selected with digital input DIB6 All outputs are freely programmable Other additonal functions Programmable Start stop and Reverse signal logic Analog input signal range selection Two frequency in band limit indications Torque in band limit indication Reference in band limit indication Second set of ramps and choice of linear or S curve DC braking at start and stop Three prohibit frequency lockout ranges Programmable V Hz curve and switching frequency Autorestart function Motor Thermal and Stall protection fully programmable Motor Underload protection Unused analog input functions 12 4 Multi step Speed Application The Multi step Speed Control Application can be used where fixed speed references are required 9 different speeds can be programmed one basic speed 7 multi step speeds and one jogging speed The speed steps are selected with digital signals DIB4 DIB5 and DIB6 If the jogging speed is used DIA3 can be programmed for jogging speed select The basic speed reference can be either voltage or current signal via analog input terminals 2 3 or 4 5 All outputs are freely programmable Other a
13. Page 35 84 Wiring 6 1 4 Installation instructions If an CX open chassis unit is to be installed outside a control cabinet or a separate cubicle a protective IP20 cover should be installed to cover the cable connections see figure 6 1 4 3 The protective cover may not be needed if the unit is mounted inside a control cabinet or a separate cubicle All open chassis CX units should always be mounted inside a control cabinet or a separate cubicle Locate the motor cable away from the other cables Avoid long parallel runs with other cables If the motor cable runs in parallel with the other cables the minimum distances given in table 6 1 4 3 between the motor cable and control cables should be followed These minimum distances apply also between the motor cable and signal cables of other systems The maximum length of a motor cable can be 600ft 180 m except for ratings 1 5 Hp and below max length is 160 ft 50 m and 2 Hp max length 330 ft 100 m The power cables should cross other cables at an angle of 90 degrees An output dv dt filter option is required for motor cable lengths exceeding 33ft 10m for drives 2 Hp and below and 100ft 33m for drives 3Hp and larger Distance Motor between cables cable length ft m ft m 1 0 3 lt 165 50 3 3 1 lt 600 180 Table 6 1 4 3 Minimum cable distances Connecting cables 3 See chapter 6 1 5 for cable insulation checks Motor and utility cables should b
14. Utility Control cable cable Ch9KYTK2 Figure 6 1 4 10 Cable assembly for open chassis CX 1500 5000HP V 3 4 5 CX 1250 4000HP V 36 and CX 0750HP V 3 2 for NEMA 1 CXL 1500 5000HP V 3 4 5 and CXL 0750HP V 3 2 Page 47 84 Wiring Fixing screws of protective covers After connecting the cables but before switching on the utility supply ensure 1 Insert all 10 terminal isolator plates A in the slots between the terminals see figure below 2 Insert and fix three plastic protective covers B C and D over the Fixing the terminal isolation plates Bend the plate to fit it into a slot Release to lock it in correct position Insert plate into the slots Terminal isolation plates Ch9SUOJAT Figure 6 1 4 11 Cable cover and terminal assembly for open chassis CX 1500 5000HP V 3 4 5 CX 1250 4000HP V 3 6 and CX 0750HP V 3 2 for NEMA 1 CXL 1500 5000HP V 3 4 5 and CXL 0750HP V 3 2 Page 48 84 Wiring Control card __ I O terminals Connect the shield to the terminal Utility cable terminals DC link brake resistor terminals Motor cable _ terminals V Vo Ground terminal Ground terminal Ch5CX6 Control cable Sb bal LJ LJ Motor cable Utility cable Brake resistor cable Figure 6 1 4 12 Cable assembly for open chassis CX 0100 0300HP V 3 6 Page 49 84 Wiring Control card I O terminals
15. lin range 0 20 mA TARDER 24V Control voltage output Voltage for switches etc max 0 1 A i GND Control voltage ground Ground for reference and controls a DIA1 Start forward Contact closed start forward a Programmable DIA2 Start reverse Contact closed start reverse ig a Pots Programmable as eee DIA3 Fault reset Contact open no action Programmable Contact closed fault reset l CMA Common for DIA1 DIA3 Connect to GND or 24V maena 24V Control voltage output Voltage for switches same as 6 B GND I O ground Ground for reference and controls P A lee DIB4 Multi step speed select 1 sel1 sel2 sel3 0 0 0 basic speed i es DIB5 Multi step speed select 2 1 0 speed 1 0 1 speed 2 er 2h DIB6 Multi step speed select 3 ne Tt 1 1 1 speed 7 L CMB Common for DIB4 DIB6 Connect to GND or 24V loutt Analog output Programmable par 3 1 READY l lout Output frequency Range 0 20 mA R max 500 Q 6 DO1 Digital output Programmable par 3 6 READY Open collector 1 lt 50 mA V lt 48 VDC f RO1 Relay output 1 Programmable par 3 7 RUN i RO1 RUN SSR A ame e n n RO1 FAULT RO2 Relay output 2 Programmable par 3 8 220 SSS SS RO2 FAULT VAC 4 RO2 Max mgu Figure 3 2 1 Default I O configuration and connection example of the Multi step speed Control Application Page 3 2 Multi step Speed Control Application 3 3 Control signal lo
16. poke a Source A B selection Contact open source A is active Contact closed source B is active Common for DIB4 DIB6 Connect to GND or 24V Output frequency Programmable par 3 1 READY Analog output Range 0 20 mA R max 500 Q m amp T Digital output Programmable par 3 6 READY Open collector lt 50 mA V lt 48 VDC Relay output 1 Programmable par 3 7 RUN _ RUN T E FAULT Relay output 2 Programmable par 3 8 10 ee FAULT VAC 4 Max Sa Figure 2 2 1 Default I O configuration and connection example of the Local Remote Control Application Page 2 2 Local Remote Control Application 2 3 Control signal logic BASIC PARAMETERS Group 1 11 5 Source A reference selection 1 6 Source B reference selection PROGRAMMABLE PUSH BUTTON 2 Internal frequency reference Up Down i Internal Start FW Programmable Start Sto Start Stop and j R Start Rev _ Reverse signal logic Source A Internal l H reverse Start FW_ Programmable Start Stop and Start Rev Reverse signal logic Source B Internal Source A B selection fault reset Fault reset input programmable control line Signalline UD012K02 Figure 2 3 1 Control signal logic of the Local Remote Control Application Switch positions shown are based on the factory settings Page 2 3 Local Remote Control Application
17. 0 5 6 2 Switching frequency Motor noise can be minimized by using a high switching frequency Increasing the frequency reduces the capacity of the CX CXL CXS Before changing the frequency from the factory default 10 kHz 3 6 kKHz gt 40Hp check the drive derating from the curves in figure 5 2 2 and 5 2 3 of the User s Manual Page 6 27 DO A Q 6 5 6 6 6 7 DD oOo Pump and fan control Application Field weakening point Voltage at the field weakening point The field weakening point is the output frequency where the output voltage reaches the set maximum value par 6 4 Above that frequency the output voltage remains at the set maximum value Below that frequency output voltage depends on the setting of the V Hz curve parameters 1 8 1 9 6 5 6 6 and 6 7 See figure 6 5 17 When parameters 1 10 and 1 11 nominal voltage and nominal frequency of the motor are set parameters 6 3 and 6 4 are also set automatically to the corresponding values If different values for the field weakening point and the maximum output voltage are required change these parameters after setting the parameters 1 10 and 1 11 V Hz curve middle point frequency If the programmable V Hz curve has been selected with parameter 1 8 this parameter defines the middle point frequency of the curve See figure 6 5 17 V Hz curve middle point voltage If the programmable V Hz curve has been selected with parameter 1 8 th
18. 10 Motor potentiometer DOWN 2 16 Vin signal range 0 1 0 0 10 V 1 Custom setting range Vin custom setting min 0 00 100 00 0 00 Vin custom setting max 0 00 100 00 100 00 Vin signal inversion 0 1 0 0 Not inverted 1 Inverted Vin signal filter time 0 00 10 00 s 0 No filtering lin signal range 0 2 0 0 20 mA 1 4 20 mA 2 Custom setting range lin custom setting minim 0 00 100 00 0 00 lin custom setting maxim 0 00 100 00 100 00 lin signal inversion 0 1 0 0 Not inverted 1 Inverted lin Signal filter time 0 01 10 00 s 0 No filtering Source B Start Stop logic selection 0 3 DIB4 DIB5 0 Start forward Start reverse 1 Start Stop Reverse 2 Start Stop Run enable 3 Start pulse Stop pulse Source A reference scaling minimum value O par 2 15 Sets the frequency corresponding to the min reference signal Source A reference scaling maximum value O fmax 1 2 Sets the frequency corresponding to the max reference signal 0 Scaling off gt 0 Scaled maximum value Source B reference scaling minimum value O par 2 17 Sets the frequency corresponding to the min reference signal Source B reference scaling maximum value Note Sets the frequency corresponding to the max referen
19. 11 cma 2 2 251 lt 0 4A 300Vde 112 24Vout __RO2 3 126 lt 2kVA 250Vac i Continuously 13 GND lt 2Arms 14 DIB4 1 Brake 15 DIB5 Chopper 24 V gt 16 DIB6 i Optional enD 47 CMB xX x dotted line indicates the connection with inverted signal levels 1 Jo lu L2 L3 Internal RFI filter Brake Resistor i Optional Figure 6 3 General wiring diagram NEMA 1 12 units frame sizes M4 to M7 and compact NEMA 1 units Page 32 84 Wiring 6 1 Power connections Use cables with a heat resistance of 140 F 60 C or higher The cable and the fuses have to be sized in accordance with the rated output current of the unit Installation of the cable consistent with the UL Instructions is explained in chapter 6 1 4 1 The minimum dimensions for the Cu cables and corresponding fuses are given in the tables 6 1 2 6 1 5 The fuses have been selected so that they will also function as overload protection for the cables Consistent with the UL requirements for maximum protection of the CX CXL CXS UL recognized fuses type RK should be used If the motor temperature protection It is used as overload protection the cables may be selected according to that If 3 or more cables are used in parallel on larger units every cable must have its own overload protection These instructions cover th
20. 337 Series CXL NEMA 1 Dimensions Frame Size WxHxD Number CXL O150HP V 32 15 CXL 0200HP V 32 20 CXL 0250HP V 32 25 CX 0300HP V3 2 30 CXL 0400HP V 32 40 CXL 0500HP V 32 50 Hp lct 2 3 N 3 5 16 7 5 22 30 43 5 7 5 10 n 4 gt ajo 0 5 0 0 0 NX ets oO 4 5 Pas aS ol Non D ra Oo 75 200 100 k k Hp Ivt M8 NEMA 1 19 5 x 50 8 x 14 lct continuous rated input and output current Ivt continuous rated input and output current Encl nclosure Style ehes M4 NEMA 1 4 7x15 4x85 17 6 M5 NEMA 1 6 2 x 20 3 x 9 4 35 3 M6 NEMA 1 8 7 x 25 6 x 11 4 M7 NEMA 1 eos 84 14 7 x 39 4 x 13 337 constant torque load max 50C ambient variable torque load max 40C ambient Page 21 84 4 3 Specifications Utility connection Input voltage Vin Technical data 200 240V 380 440V 460 SOOV 525 690V 15 10 Input frequency 45 66 Hz Connection to the mains once per minute or less normally Motor Connection Output voltage 0 Vi Continuous output current lor ambient max 50 C overload 1 5 x lor 1min 10 min lyr ambient max 40 C 1 1 x Io7 1min 10 min Starting torque 200 Starting current 2 5 x lor 2 s every 20 s if output frequency lt 30 Hz and if the heatsink temperature lt 60 C Output frequency 0 500 Hz
21. 6 6 DO A Q 1 2 Local Remote Control Application Jog speed reference This parameter value defines the jog speed if the DIA3 digital input is programmed for Jog and is selected See parameter 2 2 Prohibit frequency area Low limit High limit In some systems it may be necessary to avoid certain Output frequency Hz frequencies because of mechanical resonance problems ole ges e ae a cee With these parameters it is possible to set limits for three Sparse te cite taeda da skip frequency regions between 0 Hz and 500 Hz The accuracy of thesetting is 0 1 Hz See figure 54 Ep z 55 5 6 reference l Reference Hz T T gt UD012K33 Figure 2 5 26 Example of prohibit frequency area setting Motor control mode 0 Frequency control The I O terminal and panel references are fre V Hz quency references and the drive controls the out put frequency output freq resolution 0 01 Hz 1 Speed control The I O terminal and panel references are speed sensorless vector references and the drive controls the motor speed control accuracy 0 5 Switching frequency Motor noise can be minimized by using a high switching frequency Increasing the switching frequency reduces the current capacity of the CX CXL CXS Before changing the frequency from the factory default 10 kHz 3 6 kHz gt 40 Hp check the drive derating in the curves shown in figures 5 2 2 and 5 2 3 in chapter 5 2 of th
22. Aux drive 2 stop start Aux drive 3 stop Figure 6 5 26 Reference steps after starting and stopping the auxiliary drives Sleep level Sleep delay Changing this parameter from a value of 0 0 Hz activates the sleep function where the drive is stopped automatically when the frequency is below the sleep level par 9 16 continuously over the sleep delay 9 17 time During the stop state the Pump and fan control logic is operating and will switch the drive to the Run state when the wake up level defined with parameters 9 18 and 9 19 is reached See figure 6 5 27 Wake up level The wake up level defines the percentage level below which the actual frequency must fall or which has to be exceeded before starting the drive from the sleep function See figure 6 5 27 Wake up function This parameter defines if the wake up occurs when the frequency either falls below or exceeds the wake up level par 9 18 Page 6 38 9 20 Pump and fan control Application Actual value Wake up level param 9 18 Output frequency t lt t param 9 17 sleep Start Stop status of ISAS the var speed drive stop Figure 6 5 27 Example of the sleep function Pl regulator bypass With this parameter the Pl requlator can be programmed to be bypassed Then the frequency of the drive is controlled by the frequency reference and the starting points of the auxiliary drives are al
23. Current limit 0 1 2 5 xlncx 1 5x Incx Output current limit A of the unit V Hz ratio selection 0 2 0 0 Linear 1 Squared 2 Programmable V Hz ratio V Hz optimisation G 0 1 0 None 1 Automatic torque boost Nominal voltage of the motor 180 690 V 230 V 380 V 480 V 575 V CX CXL CXS V 3 2 CX CXL CXS V 3 4 CX CXL CXS V 35 CXV36 Nominal frequency of the motor 30 500 Hz 60 Hz fn from the nameplate of the motor Nominal speed of the motor 1 20000 rpm 1720 rpm Nn from the nameplate of the motor Nominal current of the motor 2 5 X Incx Inox from the nameplate of the motor Supply voltage 208 240 230 V CX CXL CXS V 3 2 380 440 380 V CX CXL CXS V 3 4 380 500 480 V CX CXL CXS V 35 525 690 575 V CXV36 Parameter conceal 0 1 0 Visibility of the parameters 0 all parameter groups visible 1 only group 1 is visible Parameter value lock Disables parameter changes 0 changes enabled 1 changes disabled Note Parameter value can be changed only when the frequency converter is stopped If 1 2 gt motor synchr speed check suitability for motor and drive system Selecting 120 500 Hz range see page 3 5 Default value for a four pole motor and a nominal size drive Page 3 4 Multi step Speed Control A
24. Figure 5 5 27 Setting of minimum point par 6 3 load Underload protection zero frequency load Torque limit can be set between 10 0 150 x Trmotor This parameter is the value for the minimum allowed torque with zero frequency Refer to the figure 5 5 27 If parameter 1 13 is adjusted this parameter is automatically restored to its default value Underload time This time can be set between 2 0 600 0 s This is the maximum allowed time for an underload state There is an internal up down counter to accumulate the underload time Refer to the figure 5 5 28 If the underload counter value goes above this limit the protection will cause a trip refer to the parameter 7 14 If the drive is stopped the underload counter is reset to zero Page 5 36 G0 g N Multi purpose Control Application A Underload time counter Trip area Par 7 17 i Trip warning par 7 14 I I I UMCH7_17 Time gt Underl No underl Figure 5 5 28 Counting the under load time Automatic restart number of tries Automatic restart trial time The Automatic restart function restarts the drive after the faults selected with parameters 8 4 8 8 The Start function for Automatic restart is selected with parameter 8 3 A Number of faults during t trrial 3 ear Us Par 8 1 3 44 trig Par 8 2 t gt Three faults Four faults RUN TOPe o ha se
25. High limit 3 16 Active reference limit 0 0 fmax 0 1 Hz 0 0 Hz 2 24 supervision value par 1 2 3 17 External brake OFF delay 0 0 100 0s 0 1s 0 5s 2 25 3 18 External brake ON delay 0 0 100 0 s 0 1s 1 58 2 25 3 19 Drive 0 2 1 0 0 No supervision 2 25 temperature limit 1 Low limit supervision function 2 High limit 3 20 Drive 10 75 C 1 40 C 2 25 temperature limit 3 21 I O expander board opt 0 7 1 3 See parameter 3 1 2 22 analog output function 3 22 1 O expander board opt 0 00 10 00 s 0 01 s 1 00s See parameter 3 2 2 22 analog output filter time 3 23 1 O expander board opt 0 1 1 0 See parameter 3 3 2 22 analog output inversion 3 24 I O expander board opt 0 1 1 0 See parameter 3 4 2 22 analog output minimum 3 25 I O expander board opt 10 1000 1 100 See parameter 3 5 2 22 analog output scale Note Parameter value can be changed only when the drive is stopped Page 2 10 Local Remote Control Application Group 4 Drive control parameters Code Parameter Range Step Default Custom Description Page 4 1 Acc Dec ramp 1 shape 0 0 10 0s 0 1s 0 0s 0 Linear 2 26 gt 0 S curve acc dec time 4 2 Acc Dec ramp 2 shape 0 0 10 0s 0 1s 0 0s 0 Linear 2 26 gt 0 S curve acc dec time 4 Acceleration time 2 0 1 3000 0s 0 1s 10 0s 2 26
26. Honeywell Users Manual Application Manual Excel VRL CX CXL CXS Constant and variable torque Variable Speed Drives for induction motors 1 Hp to 1100 Hp Subject to changes without notice USERS MANUAL AND APPLICATION MANUAL These two manuals provide the general information on how to use frequency converters and how to apply if required Application Package CX CXL CXS Users manual provides the information necessary to install start up and operate CX CXL CXS frequency converters It is recommended that this manual is read thoroughly before powering up the frequency converter for the first time If a different I O configuration or different operational functions is required see chapter 12 from the Users manual Application package for a more suitable application For more detailed information read the attached Application Package application manual If problems are experienced please contact your local Honeywell distributor Honeywell is not responsible for the use of the frequency converter differently from what is noted in these instructions Monitoring values MON Data name Unit Output frequency Motor speed Motor current Motor torque Motor power Motor voltage DC link voltage Temperature Operating hours trip counter MWh hours Digital and relay output status Control program Unit nominal power Pl controller reference Pl controller actual value Pl controller error value Pl c
27. Selection 2 active speed select 2 11 Motor pot contact closed Reference decreases until the contact is UP opened DIB6 function Selections are same as in 2 2 except 10 Multi Step contact closed Selection 3 active speed select 3 11 Motor pot contact closed Reference decreases until the contact is DOWN opened Page 5 18 2 6 2 7 2 8 Note 2 9 Multi purpose Control Application Vin Signal range 0 Signal range 0 10 V 1 Custom setting range from custom minimum par 2 4 to custom maximum par 2 5 2 Signal range 10 10 V can be used only with Joystick control Vin custom setting minimum maximum With these parameters Vp can be set for any input signal span within 0 10 V Minimum setting Set the V signal to its minimum level select parameter 2 7 press the Enter button Maximum setting Set the V signal to its maximum level select parameter 2 8 press the Enter button These parameters can only be set with this procedure not with arrow up arrow down buttons Vin Signal inversion Parameter 2 9 0 no inversion of analog V signal Parameter 2 9 1 inversion of analog V signal Vin Signal filter time Filters out disturbances from the incoming analog V signal A long filtering time makes regula tion response slower See figure 5 5 5 Figure 5 5 5 V signal filtering Analog input I signal range 0 0 20 mA 1 4 20 mA 2 Cu
28. Table 5 2 2 Required cooling air Page 24 84 Installation CX CXL 0150 O200HP CX CXL 0110 0150HP CX CXL 0075 0100HP CX CXL 0055 0075HP CX CXL 0040 OOSOHP CX CXL 0030 0040HP CX CXL 0022 0030HP f Lo 1 f fsw kHz 910111213141516 Figure 5 2 2a 2 2 15 kW Figure 5 2 2b 18 5 90 kW 3 20 hp 25 125 HP CX CXL 2500 3000HP CX CXL 2000 2500HP CX CXL 1600 2000HP CX CXL 1320 1500HP CX CXL 1100 1250HP u fsw kHz Figure 5 2 2c 110 250 kW 150 300 HP CX CXL 0900 1250HP CX CXL 0750 1000HP CX CXL 0550 0750HP CX CXL 0450 0600HP CX CXL 0370 0500HP CX CXL 0300 0400HP CX CXL 0220 0300HP CX CXL 0185 0250HP fsw kHz Figures 5 2 2a c Power dissipation as a function of the switching frequency for 400V kW and 500V Hp for standard enclosures I variable torque CX CXL 0200HP CX CXL 0150HP CX CXL 0100HP CX CXL 0075HP CX CXL 0050HP a CX CXL 0040HP es CX CXL 0030HP CX CXL 0020HP CX CXL 0750HP CX CXL 0600HP CX CXL 0500HP CX CXL 0400HP CX CXL 0300HP CX CXL 0250HP fsw kHz 6 Figure 5 2 2d 2 20 HP Figure 5 2 2e 25 75 HP fsw kHz Figures 5 2 2d e Power dissipation as a function of the switching frequency for 230V Hp for standard enclosures l variable torque Page 25 84 Installation 300 250 nN pond Oo 150
29. WRONG CORRECT A COOL Tooele DAIO QOO JOQG GOO NOTE Unit sizes 150 500 Hp do not lift without a rod through the lifting holes in the unit see above M9NOSTO Page 29 84 Wiring 6 WIRING General wiring diagrams are shown in figures 6 1 6 3 The following chapters have more detailed instructions about wiring and cable connections The general wiring diagrams for M11 and M12 frame sizes are provided in a separate manual If further information is required contact your Honeywell distributor 10 Vref Vin GND 1 Reference voltage Reference current lin 24Vout GND DIA1 19 DIA2 10DIA3 Aii cma 12 24Vout HI3GND 14 0ipa I15DIB5 24V gt qe DIB6 117 CMB GND J yee x dotted line indicates the connection with inverted lt 0 4 20mA 18 RL lt 500Q Plout j19 20 gt i a U lt 48V lt 50mA RO1 1 21 5 1 2 122 __RO1 3 23 Ru ac dc i DO1 RO2 1 24 Switching A lt 8A 24Vdc 2 2 25 2 lt 0 4A 300Vdc RO2 3 26 lt 2kVA 250Vac Continuously lt 2Arms 1 Brake Chopper Optional signal levels maa i Brake Resistor Optional RFI f
30. Wake up level 0 0 100 0 Level of the actual value for restarting the CX CXL CXS Wake up function 0 1 0 Wake up when falling below the wake up level 1 Wake up when exeeding the wake up level Pl regulator bypass Table 6 5 1 Special parameters Groups 2 9 1 Pl regulator bypassed Page 6 15 Pump and fan control Application 6 5 2 Description of Groups 2 9 parameters 2 1 DIA2 function 1 External fault closing contact Fault is shown and motor is stopped when the input is active 2 External fault opening contact Fault is shown and motor is stopped when the input is not active 3 Run enable contactopen Start of the motor disabled contact closed Start of the motor enabled 4 Acc Dec contact open Acceleration Deceleration time 1 selected time select contact closed Acceleration Deceleration time 2 selected 5 Reverse contact open Forward If two or more inputs are contact closed Reverse programmed to reverse only one of them is required for reverse 6 Jog freq contact closed Jog frequency selected for freq refer 7 Fault reset contact closed Resets all faults 8 Acc Dec contact closed Stops acceleration and deceleration until operation the contact is opened prohibited 9 DC braking contact closed In the stop mode the DC braking operates command until the contact is opened see figure 6 5 1 DC brake current is set wi
31. characteristics Stall time The time can be set between 2 0 120 s This is the maximum allowed time for a stall stage There is an internal up down counter to count the stall time Refer to the figure 6 5 21 If the stall time counter value goes above this limit the protection will cause a trip refer to the parameter 7 10 Maximum stall frequency A Stall time counter The frequency can be set between 1 f na par 1 2 TEA In the stall state the output Enp frequency has to be smaller than Sins this limit Refer to figure 6 5 20 Trip warning par 7 10 UMCH7_12 Time gt Figure 6 5 21 Counting the stall time Bi 2a No stall LJ L Parameters 7 14 7 17 Underload protection General The purpose of motor underload protection is to ensure that there is load on the motor while the drive is running If the motor load is reduced there might be a problem in the process e g broken belt or dry pump Motor underload protection can be adjusted by setting the underload curve with parameters 7 15 and 7 16 The underload curve is a squared curve set between zero frequency and the field weakening point The protection is not active below 5Hz the underload counter value is stopped Refer to figure 6 5 22 Page 6 33 Pump and fan control Application The torque values for setting the underload curve are set with percentage values which refer to the nominal torque of the motor The
32. lt lt or l Pp rp o o ajoja fo Z o o SP ro a alol a o a eS a a N AJo o o WHY S J a o ol Ph ojo fo ole N lt 00 2 000 0 300MCM 00 350MCM 000 2x 250MCM 00 N oO fo 0 300MCM 00 350MCM 000 2x 250MCM 00 2x 350MCM 000 2x 500MCM 2x 500MCM Table 6 1 3 Utility motor cables and fuse recommendations according to output currents Ic and lyy 400V range N fo lt aj A fN oj ojojo ojojoj o Po r N o L ojo oa ES 2x 350MCM 000 2x 500MCM 250 MCM CONTACT FACTORY fo Page 34 84 OV Q cable Q cable ct Fuse ae M Fuse LINE amp MOIOR i Qand 075 36 ae em ea e EAC 47 E E sia ee aE oo ee 10 16 16 ma tel 5 15 1404 14 Ea 10 s o2 3 2x6 n 5 oa _ 2 xmo steeoa eta atea aja Table 6 1 4 Utility motor cables and fuse Table 6 1 5 Utility motor cables and fuse recommendations according to output currents recommendations according to output currents lcr Icrand lyr 600V range and lyr 230V range 0 Cu 00 AI 350 MCM 2x350 MCM Cu 2x500 MCM Al 2x500 MCM 2x600 MCM 2x500 MCM CONTACT FACTORY 700 EETA 500 800 NEMA 1 12 maximum 3 parallel connected cables can be used Table 6 1 6 Maximum cable sizes of the power terminals
33. 0 1 Reference for Pl controller reference Table 6 7 1 Panel reference Page 6 41 Pump and fan control Application Remarks Page 6 42 Home and Building Control Honeywell Inc Honeywell Plaza P O Box 524 Minneapolis MN 55408 0524 Honeywell Latin American Region 480 Sawgrass Corporate Parkway Suite 200 Sunrise FL 33325 63 2554 4 J H Rev 1 99 Home and Building Control Honeywell Limited Honeywell Limit e 155 Gordon Baker Road North York Ontario Honeywell Regelsysteme GmbH Honeywellstrabe 2 6 63477 Maintall Germany Honeywell Asia Pacific Inc Room 3213 3225 Sun Hung Kai Centre No 30 Harbour Road Wanchai Hong Kong Honeywell www honeywell com Home and Building Control Honeywell Inc Honeywell Plaza P O Box 524 Minneapolis MN 55408 0524 Honeywell Latin American Region 480 Sawgrass Corporate Parkway Suite 200 Sunrise FL 33325 63 2554 4 J H Rev 1 99 Home and Building Control Honeywell Limited Honeywell Limit e 155 Gordon Baker Road North York Ontario Honeywell Regelsysteme GmbH Honeywellstrabe 2 6 63477 Maintall Germany Honeywell Asia Pacific Inc Room 3213 3225 Sun Hung Kai Centre No 30 Harbour Road Wanchai Hong Kong Honeywell www honeywell com
34. 1 DIA1 closed contact start open contact stop DIA2 closed contact reverse open contact forward See figure 2 5 2 A FWD Output Stop function frequency par 4 7 coasting REV DIA1 DU mE iw oe ee ee BE a a UD012K10 Figure 2 5 2 Start Stop reverse Page 2 15 Local Remote Control Application 2 DIA1 closed contact DIA2 closed contact start open contact stop start enabled open contact start disabled 3 3 wire connection pulse control DIA1 closed contact start pulse DIA2 closed contact stop pulse DIA3 can be programmed for reverse command See figure 2 5 3 4 DIA1 closed contac DIA2 closed contac start forward reference increases motor potentiometer reference par 2 1 is automatically set to 4 if par 1 5 is set to 3 or 4 t t A FWD Output Stop function If Start and Stop pulses are frequency par 4 7 simultaneous the Stop pulse coasting overrides the Start pulse Amz DIA1 a ee ee a Start l gt min 50 ms UD009K11 DIA2 T wie Stop Figure 2 5 3 Start pulse Stop pulse 2 2 DIA3 function 1 External fault closing contact Fault is shown and motor is stopped when the contact is closed 2 External fault opening contact Fault is shown and motor is stopped when the input is open 3 Run enable contactopen Start of the motor disabled contact closed Start of the motor enabled 4 Acc
35. 10 and 1 11 V Hz curve middle point frequency If the programmable V Hz curve has been selected with parameter 1 8 this pa rameter defines the middle frequency point of the curve See figure 1 5 16 V Hz curve middle point voltage If the programmable V Hz curve has been selected with parameter 1 8 this pa rameter defines the middle voltage point of the curve See figure 1 5 16 Output voltage at zero frequency If the programmable V Hz curve has been selected with parameter 1 8 this pa rameter defines the zero frequency voltage of the curve See figure 1 5 16 Overvoltage controller Undervoltage controller These parameters allow the over undervoltage controllers to be switched ON or OFF This may be useful in cases where the utility supply voltage varies more than 15 10 and the application requires a constant speed If the controllers are ON they will change the motor speed in over undervoltage cases Overvoltage faster undervoltage slower Over undervoltage trips may occur when the controllers are not used Page 1 20 7 1 7 2 7 3 7 4 Standard Application ULV Default nominal voltage of the motor Va Parameter 6 4 Field weakening point Parameter 6 6 Default 10 Default nominal frequency of the motor Parameter 6 7 Default 1 3 Parameter 6 5 Parameter 6 3 f Hz Default 5 Hz Figure 1 5 16 Programmable V Hz curve
36. 27 6 x 39 4 x 15 4 M10 Chassis 138 9 x 39 4 x 15 4 z M8 Chassis 19 5 x 35 0 x 13 9 lct continuous rated input and output current constant torque load max 50C ambient Ivt continuous rated input and output current variable torque load max 40C ambient Protected Enclosure with Option KK Page 15 84 Technical data 440 500Vac 10 15 50 60 Hz 3 Input Series CXL NEMA 1 Rated Horsepower and output current Dimensions Catalog Constant Torque Variable Torque KAME SEEE WxHxD Number Enclosure Style inches 1 1 1 1 2 2 2 2 3 3 4 4 5 5 6 6 7 7 1 o D M4 NEMA 1 4 7 x 15 4 x 8 5 coxo V5 3 5 CXL 0040HP V 35 Ocse vss 3 3 CXL 0075HP V 35 7 5 Coe vash 0 15 CXL 0150HP V 35 15 CE NEE E E B e ME EE CXL 0250HP V 35 25 ae M5 NEMA 1 6 2 x 20 3 x 9 4 e E M6 NEMA 1 8 7 x 25 6 x 11 4 83 8 60 CXL 0750HP V 35 00 M7 NEMA1 14 7x39 4x 13 0 221 CX 1260HP V 35 125 160 150 180 200 260 M8 NEMA1 19 5x47 6x13 9 309 20 ase 260 ee fee a CXL 4000HP V35 400 480 500 600 ERN CXL 5000HP V 35 500 600 600 672 y 5 10 15 20 25 30 40 o o 8 6 5 1 5 1 7 4 0 2 5 7 2 0 F 5 1 7 2 0 2 5 7 0 72 380 440Vac 10 15 50 60 Hz 3 Input Series CXL NEMA 1 Rated Kilowatts and output current Frame Size Dimensions Constant Torque Variable Torque W
37. 3 If Start forward DIA1 and start reverse DIA2 signals are active simultaneously the start forward signal DIA1 has priority 1 DIA1 closed contact start open contact stop DIA2 closed contact reverse open contact forward See figure 3 5 2 A FWD Output Stop function frequency par 4 7 coasting DIA i DIA2 UD012K10 Figure 3 5 2 Start Stop reverse Page 3 15 Multi step Speed Control Application 2 DIA1 closed contact DIA2 closed contact 3 3 wire connection DIA1 closed contact start pulse DIA2 closed contact stop pulse DIA3 can be programmed for reverse command See figure 3 5 3 start open contact stop start enabled open contact start disabled A FWD Output Stop function If Start and Stop pulses are frequency par 4 7 simultaneous the Stop pulse coasting overrides the Start pulse REV DIA1 Me e ayes Start min 50 ms UD009K11 DIA2 a ay Stop Figure 3 5 3 Start pulse Stop pulse 2 2 DIA3 function 1 External fault closing contact Fault is shown and motor is stopped when the contact is closed 2 External fault opening contact Fault is shown and motor is stopped when the input is open 3 Run enable contact open Start of the motor disabled contact closed Start of the motor enabled 4 Acc Dec contact open Acceleration Deceleration time 1 selected time select contact closed
38. 7 8 Fault history menu The fault history menu can be entered from the main menu when the symbol M6 is displayed on the first line of the Alpha numeric panel The memory of the frequency converter can store the maximum of 9 faults in the order of appearance The latest fault has the number 1 the second latest number 2 etc If there are 9 uncleared faults in the memory the next fault will erase the oldest from the memory Pressing the Enter button for about 2 3 seconds resets the fault history Then the symbol F will change for 0 Fault history reset Figure 7 11 Fault history menu 7 9 Contrast menu The contrast menu can be entered from the main menu when the symbol M7 is visible on the first line of the Alpha numeric display Use the menu button right to enter the edit menu You are in the edit menu when the symbol C starts to blink Then change the contrast to the desired level using the browser buttons The changes take effect immediately Figure 7 12 Contrast setting Page 65 84 T Control panel 7 10 Active warning display When a warning occurs a text with a symbol A appears on the display Warning codes are explained in Table 7 3 buttons The display does not have to be cleared in any special way The warning on the display does not disable the normal functions of the push Code Warning Checking A15 Motor stalled Moto
39. Cx6000HP V3 6 600 CX 7000HP V3 6 700 Ict rated input and output current Ivt rated input and output current Protected Enclosure with Option N 3S le kk Page 18 84 Technical Data 440 500Vac 10 15 50 60 Hz 3 Input Series CXS compact NEMA 1 Rated Horsepower and output current Catalog Frame Size Dimensions Weight Constant Torque Variable Torque Enclosure Sivie WxHxD Ibs ne E 2 3 3 3 CXS 0010HP V 3 35 3 wie 4 7 x 12 0 x 5 9 m 8 15 vas compe ompac EA 5 3 x 15 4 x 8 1 15 4 er 34 3 1 3 5 5 11 15 21 27 34 M5B Compact 33x 228x8 5 3 S NEMA 1 380 440Vac 10 15 50 60 Hz 3 Input Series CXS compact NEMA 1 Catalog Rated Kilowatts and output current Frame Size Dimensions Weight N Constant Torque Variable Torque Enclosure Style WxHxD lbs umber Ivt y inches wfe CXS 0007 V34 0 2 CXS 0011 V34 M3 Compact 47x 12 0x5 9 NEMA 1 6 M4B Compact Hae 5 3 x 15 4 x 8 1 3 CXS 0185 V 34 22 CXS 0015 V 34 ee 7 3x 228x85 3 CXS 0220 V 3 4 2 48 30 CXS 0022 V 34 CXS 0030 V 3 4 lct continuous rated input and output current constant torque load max 50C ambient M continuous rated input and output current variable torque load max 40C ambient H F 7 eed p 1 5 5 3 2 5 3 5 5 5 11 10 15 15 21 20 27 25 4 30 40 ePPPPREPERE DD WD Dd WD WD WW Gd
40. Freq reference 122 45 Hz Special param ee M3 Reference R1 1 Bed basic Param P 1 15 V2 Motor Speed M0 Motor temp rise M1 Monitor V 1 20 V1 Output frequency 12244 Hz Figure 7 2 Panel operation k PI R1 Freq reference 122 45 Hz PIL O 1 P1 1 Min frequency lt gt Min frequency 12 34 Hz 12 34 Hz Page 57 84 7 3 Monitoring menu The monitoring menu can be entered from the main menu when the symbol M1 is visible on the first line of the Alpha numeric display How to browse through the monitored values is presented in Figure 7 3 All monitored signals are listed V2 Motor Speed Mao Motor temp rise OG Figure 7 3 Monitoring menu in Table 7 1 The values are updated once every 0 5 seconds This menu is meant only for signal checking The values cannot be altered here See 7 4 Parameter group menu Number Signal name Unit Description V1 Output frequency Hz Frequency to the motor V2 Motor speed rom Calculated motor speed V3 Motor current A Measured motor current V4 Motor torque Calculated actual torque nominal torque of the unit V5 Motor power Calculated actual power nominal power of the unit V6 Motor voltage V Calculated motor voltage V7 DC link voltage V Measured DC link voltage V8 Temperature C Heat sink temperature V9 Operating day counter DD dd Operat
41. Response to reference faults 0 No response 1 Warning 2 Fault stop mode after fault detection according to parameter 4 7 3 Fault always coasting stop mode after fault detection A warning or a fault action and message is generated if the 4 20 mA reference signal is used and the signal falls below 4 mA The information can also be programmed via digital output DO1 and via relay outputs RO1 and RO2 Response to external fault 0 No response 1 Warning 2 Fault stop mode after fault detection according to parameter 4 7 3 Fault always coasting stop mode after fault detection A warning or a fault action and message is generated from the external fault signal in the digital input DIAS The information can also be programmed into digital output DO1 and into relay outputs RO1 and RO2 Phase supervision of the motor 0 No action 2 Fault Phase supervision of the motor ensures that the motor phases have approximately equal current Ground fault protection 0 No action 2 Fault Ground fault protection ensures that the sum of motor phase currents is zero The standard overcurrent protection is always present and protects the drive from ground faults with high current levels Page 1 21 Standard Application 7 5 Motor thermal protection Operation 0 Not in use 1 Warning 2 Trip The motor thermal protection protects the motor from overheating In the Standard application the thermal pro
42. The parameter values can only be set with this procedure not with arrow up ar row down buttons V Signal inversion Parameter 2 6 0 no inversion of analog V signal Parameter 2 6 1 inversion of analog V signal Page 4 16 2 7 2 8 NN Pl control Application V signal filter time Filters out disturbances from the incoming analog V signal A long filtering time makes regula tion response slower See figure 4 5 2 Figure 4 5 2 V signal filtering Analog input I signal range 0 0 20 mA 1 4 20 mA 2 Custom signal span Analog input I custom setting minimum maximum With these parameters you can scale the input current signal l signal range between 0 20 mA Minimum setting Set the I signal to its minimum level select parameter 2 9 press the Enter button Maximum setting Set the I signal to its maximum level select parameter 2 10 press the Enter button Note The parameter values can only be set with this procedure not with arrow up arrow down buttons Analog input lip inversion Parameter 2 11 0 no inversion of lin input Parameter 2 11 1 inversion of ln input A Unfiltered signal 100 63 4 t s gt Par 2 7 UD009K15 A Output frequency Pat 214 e os oe oS eS a gp oe Se par 2 8 2 lin custom Par 2 8 0 lin 0 20 mA Par 2 13 ar A E a lin 4 20 mA i i i in
43. V Hz references and the drive controls the output frequency output freq resolution 0 01 Hz 1 Speed control The I O terminal and panel references are speed sensorless vector references and the drive controls the motor speed control accuracy 0 5 6 2 Switching frequency Motor noise can be minimized using a high switching frequency Increasing the frequency reduces the capacity of the CX CXL CXS Before changing the frequency from the factory default 10 kHz 3 6 kHz gt 40 Hp check the drive derating in the curves shown in figures 5 2 2 and 5 2 3 in chapter 5 2 of the User s Manual Page 4 27 DO A Q 6 5 6 6 6 7 DO oOo Pl control Application Field weakening point Voltage at the field weakening point The field weakening point is the output frequency where the output voltage reaches the set maximum value par 6 4 Above that frequency the output voltage remains at the set maximum value Below that frequency output voltage depends on the setting of the V Hz curve parameters 1 8 1 9 6 5 6 6 and 6 7 See figure 4 5 19 When parameters 1 10 and 1 11 nominal voltage and nominal frequency of the motor are set parameters 6 3 and 6 4 are also set automatically to the corresponding values If you need different values for the field weakening point and the maximum output voltage change these parameters after setting parameters 1 10 and 1 11 V Hz curve middle point frequency If the
44. between zero frequency and the field weakening point The protection is not active below 5Hz the underload counter value is stopped Refer to the figure 5 5 27 Page 5 35 Multi purpose Control Application The torque values for setting the underload curve are set with percentage values which refer to the nominal torque of the motor The motor s nameplate data parameter 1 13 the motor s nominal current and the drive s nominal current lct are used to find the scaling ratio for the internal torque value If other than a standard motor is used with the drive the accuracy of the torque calculation is decreased Underload protection Operation 0 Not in use 1 Warning 2 Fault Tripping and warning will give a display indication with the same message code If tripping is set active the drive will stop and activate the fault stage Deactivating the protection by setting this parameter to 0 will reset the underload time counter to zero Underload protection field weakening area load A Torque The torque limit can be set between 20 0 150 x Trmotor This parameter is the value for the RaR ISE aa nanas minimum allowed torque when the output frequency is above the field weakening point Refer to the figure 4 5 22 If parameter 1 13 is adjusted this p ar 7 16 parameter is automatically Undergadares restored to its default value f Hz T gt 5 Hz Fieldweakening UMcH7_15
45. determines the ramp time of the 7 acceleration deceleration in the middle of the curve See figure 5 5 17 Figure 5 5 17 S shaped acceleration 4 1 4 2 t deceleration UD009K20 Page 5 26 gt e A O 4 5 4 6 4 7 Stop 4 8 Multi purpose Control Application Acceleration time 2 Deceleration time 2 These values correspond to the time required for the output frequency to accelerate from the set minimum frequency par 1 1 to the set maximum frequency par 1 2 With this parameter it is possibile to set two different acceleration deceleration times for one application The active set can be selected with the programmable signal DIA3 of this application see parameter 2 2 Acceleration deceleration times can be reduced with a external free analog input signal see parameters 2 18 and 2 19 Brake chopper 0 No brake chopper 1 Brake chopper and brake resistor installed 2 External brake chopper When the drive is decelerating the motor the energy stored in the inertia of the motor and the load is fed into the external brake resistor If the brake resistor is selected correctly the drive is able to decelerate the load with a torque equal to that of acceleration See the separate Brake resistor installation manual Start function Ramp 0 The drive starts from 0 Hz and accelerates to the set reference frequency within the set acceleration time Load inertia or starting fricti
46. eee 5 3 5 4 Parameters Group 1 eeeeeeeeeees 5 4 5 4 1 Parameter table eee 5 4 5 4 2 Description of Group1 par 5 5 5 5 Special parameters Groups 2 8 5 9 5 5 1 Parameter tables 0 0 5 9 5 5 2 Description of Group 2 par 5 16 Page 5 1 Multi purpose Control Application 5 Multi purpose Control Application 5 1 General In the Multi purpose control application the frequency reference can be selected from the analog inputs the joystick control the motorized digital potentiometer and a mathematical function of the analog inputs Multi step speeds and jog speed can also be selected if digital inputs are programmed for these functions 5 2 Control I O Reference potentiometer Terminal 10Vref Reference output Digital inputs DIA1 and DIA2 are reserved for Start stop logic Digital inputs DIA3 DIB6 are programmable for multi step speed select jog speed select motorized digital potentiometer external fault ramp time select ramp prohibit fault reset and DC brake command function All outputs are freely programmable Description Voltage for a potentiometer etc Vint Analog input voltage programmable Frequency reference range 0 10 V DC GND I O ground Ground for reference and controls Analog input current programmable Default setting not used range 0 20 mA Control voltage output Voltage for switches
47. for an underload state There is an internal up down counter to accumulate the underload time Refer to the figure 2 5 33 If the underload counter value goes above this limit the underload protection will cause a trip refer to the parameter 7 14 If the drive is stopped the underload counter is reset to zero A Underload time counter Trip area Par 7 177 Tip waring par 7 l UMCH7_17 Time gt Figure 2 5 33 Counting the under nee E load time Automatic restart number of tries Automatic restart trial time The Automatic restart function restarts the drive after the faults selected with parameters 8 4 8 8 The Start type for Automatic restart is selected with parameter 8 3 See figure 2 5 34 A Number of faults during t ttrial tia l 3 eer ee 2 Par 8 1 trial Par A 2 T jAi AM Three faults Four faults RUN STOP Figure 2 5 34 Automatic restart Parameter 8 1 determines how many automatic restarts can be made during the trial time set by the parameter 8 2 The count time starts from the first autorestart If the number of restarts does not exceed the value of parameter 8 1 during the trial time the count is cleared after the trial time has elapsed The next fault starts the counting again Page 2 36 8 3 8 4 8 5 8 6 8 7 8 8 Local Remote Control Application Automatic r
48. neti term 3 4 A gt Bars 4mA Bates 20 mA ae ar 2 10 UDo12K28 Figure 4 5 3 Analog input l scaling A Output frequency Pars2 14he oe Ger sie eee ee ee par 2 8 2 i i lin custom i 1 1 i par 2 8 1 ie a lt Tin 4 20 mA i i 1 I 1 f par 2 8 0 lin 0 20 mA Par 2 13 1 r gt f 1 1 li ME l term 3 4 i 4 mA i mA Par 2 9 Par 2 10 UD012K29 Figure 4 5 4 l signal inversion Page 4 17 Pl control Application 2 12 Analog input I filter time y 4 Filters out disturbances from the incoming analog signal A long filtering time makes regulation MOO eer response slower See figure 4 5 3 Unfiltered signal Filtered signal 69 N22 tsssen fol ssetece e eee t s gt Figure 4 5 5 Analog input l filter far 21g UDo09K30 time 2 13 DIA5 function 1 External fault closing contact Fault is shown and motor is stopped when the input is active 2 External fault opening contact Fault is shown and motor is stopped when the input is not active 3 Run enable contact open Start of the motor disabled contact closed Start of the motor enabled 4 Acc Dec contact open Acceleration Deceleration time 1 selected time select contact closed Acceleration Deceleration time 2 selected 5 Reverse contact open Forward If two or more inputs are contact closed Reverse programmed to reverse only one of them i
49. oo Trip warning par 7 5 ot s H of Q e ta O tar Q g Q Q Q Q Q Q Q Q Q Q x x ats Motor temperature 1 17 x 1 e 1 Time constant T Time gt Changed with motor size and adjusted with parameter 7 8 UMCH7_92 Figure 5 5 24 Calculating motor temperature Parameters 7 10 7 13 Stall protection General Motor stall protection protects the motor from short time overload situations like a stalled shaft The reaction time of stall protection can be set shorter than with motor thermal protection The stall state is defined with two parameters 7 11 Stall Current and 7 13 Stall Frequency If the current is higher than the set limit and output frequency is lower than the set limit the stall state is true There is no true detection of shaft rotation Stall protection is a type of overcurrent protection Stall protection Operation 0 Not in use 1 Warning 2 Trip function Tripping and warning will give a display indication with the same message code If tripping is set on the drive will stop and activate the fault stage Setting this parameter to 0 will deactivate the protection and will reset the stall time counter to zero Page 5 34 Multi purpose Control Application Stall current limit A The current can be set between 0 0 200 x Inmotor In the stall stage the current has to be above this limit Refer to the fig
50. supervision 20 Unrequested rotation direction 21 External brake control inverted 22 27 Not in use 28 Auxiliary drive 1 start 29 Auxiliary drive 2start 30 Auxiliary drive 3 start Out of operation Digital output DO1 sinks current and programmable relay RO1 RO2 is activated when The drive is ready to operate The drive operates motor is running A fault trip has occurred A fault trip has not occurred The heat sink temperature exceeds 70 C Fault or warning depending on parameter 7 2 Fault or warning depending on parameter 7 1 if analog reference is 4 20 mA and signal is lt 4mA If a warning exists See Table 7 10 1 in User s Manual The reverse command has been selected Multi step or jog speed has been selected by digital inp The output frequency has reached the set reference Overvoltage or overcurrent regulator was activated The output frequency goes outside of the set supervision Low limit High limit par 3 9 and par 3 10 The output frequency goes outside of the set supervision Low limit High limit par 3 11 and par 3 12 The motor torque goes outside of the set supervision Low limit High limit par 3 13 and par 3 14 Active reference goes outside of the set supervision Low limit High limit par 3 15 and par 3 16 External brake ON OFF control with programmable delay par 3 17 and 3 18 External control mode selected with progr pushbutton 2 Temp
51. supervision value Output frequency limit 2 supervision value The frequency value to be supervised by the parameter 3 9 3 11 See figure 4 5 12 Page 4 22 Pl control Application 3 13 Torque limit supervision function 0 No supervision 1 Low limit supervision 2 High limit supervision If the calculated torque value goes under over the set limit 3 14 this P amp S 10 7 N function generates a warning message via the digital output DO1 or via a relay output RO1 or RO2 depending on the settings of 1 1 i i uDooski9 t 1 gt the parameters 3 6 3 8 Example 24 RO 21 RO1 21 RO r 22 RO1 22 RO1 22 RO1 Figure 4 5 12 Output frequency sanol l2 Roill Sla Rol supervision 3 14 Torque limit supervision value The calculated torque value to be supervised by the parameter 3 13 3 15 Reference limit supervision function 0 No supervision 1 Low limit supervision 2 High limit supervision If the reference value goes under over the set limit 3 16 this function generates a warning message via the digital output DO1 or via a relay output RO1 or RO2 depending on the settings of the parameters 3 6 3 8 The supervised reference is the current active reference It can be source A or B reference depending on DIB6 input or panel reference if panel is the active control place 3 16 Reference limit supervision value The f
52. 1 IP20 NEMA 1 IP21 NEMA 12 IP54 Page 22 84 Technical data Noise immunity Fulfils EN50082 1 2 EN61800 3 Emissions Safety Fulfils EN50178 EN60204 1 CE UL C UL Fl GOST R check from the unit nameplate specified approvals for each unit Control Analog voltage 0 10 V R 200 KQ single ended connections 10 10V joystick control resolution12 bit accur 1 Analog current 0 4 20 mA R 250 Q differential Digital inputs 6 Positive or negative logic Aux voltage 24 V 20 max 100 mA Pot meter reference 10 V 0 3 max 10 mA Analog output 0 4 20 mA R lt 500 Q resolution 10 bit accur 3 Digital output Open collector output 50 mA 48 V Relay outputs Max switching voltage 300 V DC 250 V AC Max switching load 8A 24V 0 4 A 250 V DC 2 kVA 250 V AC Max continuous load 2 Arms Protective Overcurrent protection Trip limit 4 x I functions Overvoltage protection Utility voltage 220 V 230V 240V 380V 400V Trip limit 1 47xV_ 1 41xV 1 35xV 1 47xV 1 40x V Utility voltage 415 V 440 V 460V 480V 500V Trip limit 1 35x V 1 27xV_ 1 47xV_ 1 41xV 1 35x V Utility voltage 525 V 575V 600V 660V 690V Trip limit 1 77xV 1 62xV p 1 55xV_ 1 41xV_ 1 35xV Undervoltage protection Trip limit 0 65 x V Ground fault protection Protects the inverter from an ground fault in the output motor
53. 1 0 0 No 6 36 reference fault trip 1 Yes 8 8 Automatic restart after 0 1 1 0 0 No 6 36 over undertemperature 1 Yes fault trip Page 6 14 Group 9 Pump and fan control special parameters Parameter Pump and fan control Application Range Default Description Number of aux drives 0 3 1 Start frequency of auxiliary drive 1 Imin max 51 0 Hz Stop frequency of auxiliary drive 1 min max 25 0 Hz Start frequency of auxiliary drive 2 min max 51 0 Hz Stop frequency of auxiliary drive 2 min max 25 0 Hz Start frequency of auxiliary drive 3 min max 51 0 Hz Stop frequency of auxiliary drive 3 min max 25 0 Hz Start delay of the auxiliary drives 0 0 300 0 s Stop delay of the auxiliary drives 0 0 300 0 s Reference step after start of the 1 aux drive 0 0 100 0 In of actual value Reference step after start of the 2 aux drive 0 0 100 0 In of actual value Reference step after start of the 3 aux drive 0 0 100 0 In of actual value Reserved Sleep level 0 0 120 500 0 Hz Frequency below which the freq of the speed controlled motor has go before starting the sleep delay counting 0 0 not in use Sleep delay 0 0 3000 0 s Time that freq has to be below par 9 16 before stopping the CX CXL CXS
54. 1 Control source change from I O terminals to the front panel After changing the control source the motor is stopped The direction of rotation remains the same as with I O control If the Start button is pushed at the same time as the programmable push button B2 the Run state direction of rotation and reference value will be copied from the I O terminals to the front panel 7 11 2 Control source change from panel to I O After changing the control source the I O terminals determine the run state direction of rotation and reference value If motor potentiometer is used in the application the panel reference value can be copied for a value of motor potentiometer reference by pushing the start button at the same time as the programmable push button B2 Motor potentiometer function mode must be resetting at stop state Local Remote Application param 1 5 4 Multi purpose Application param 1 5 9 Page 67 84 Startup 8 STARTUP 8 1 Safety precautions Before startup observe the following warnings and instructions Internal components and circuit boards except the isolated I O 1 terminals are at line potential when the CX CXL CXS drive is connected to the utility This voltage is extremely dangerous and may cause death or severe injury if you come in contact with it 2 When the CX CXL CXS drive is connected to the utility the motor connections U V W and DC link brake resistor connections are
55. 1 is visible Parameter value lock Defines access to the changes of the parameter values 0 parameter value changes enabled 1 parameter value changes disabled To adjust more of the functions of the Multi purpose application see chapter 5 5 to modify the parameters of Groups 2 8 Page 5 8 Multi purpose Control Application 5 5 Special parameters Groups 2 8 5 5 1 Parameter tables Group 2 Input signal parameters Parameter Default Description DIA1 DIA2 Start Stop logic 0 Start forward Start reverse selection 1 Start Stop Reverse 2 Start Stop Run enable 3 Start pulse Stop pulse DIA3 function 0 Not used 5 17 terminal 10 1 Ext fault closing contact 2 External fault opening contact 3 Run enable 4 Acc dec time selection 5 Reverse 6 Jog speed 7 Fault reset 8 Acc dec operation prohibit 9 DC braking command DIB4 function 0 Not used 5 18 terminal 14 1 Ext fault closing contact 2 External fault opening contact 3 Run enable 4 Acc dec time selection 5 Reverse 6 Jog speed 7 Fault reset 8 Acc dec operation prohibit 9 DC braking command 10 Multi Step speed select 1 DIB5 function 0 Not used 5 18 terminal 15 1 Ext fault closing contact 2 External fault opening contact 3 Run enable 4 Acc dec time selection 5 Reverse 6 Jog speed 7 Fault reset 8 Acc dec operation prohibit 9 DC braking comma
56. 10 0 s 3 25 4 4 Deceleration time 2 0 1 3000 0s 0 1 s 10 0 s 3 25 4 5 Brake chopper 0 2 1 0 0 Brake chopper notin use 3 26 1 Brake chopper in use 2 External brake chopper 4 6 Start function 0 1 1 0 0 Ramp 3 26 1 Flying start Note Parameter value can be changed only when the drive is stopped Page 3 11 Multi step Speed Control Application Code Parameter Range Step Default Custom Description Page 4 7 Stop function 0 1 1 0 0 Coasting 3 26 1 Ramp 4 8 DC braking current 0 15 1 5x 0 1A 0 5xIncx 3 26 Incx A 4 9 DC braking time at Stop 0 00 250 00s 0 01 s 0 00s 0 DC brake is off at Stop 3 26 4 10 Turn on frequency of DO 0 1 10 0 Hz 0 1 Hz 1 5 Hz 3 28 brake during ramp Stop 4 11 DC brake time at Start 0 00 25 00s 0 01s 0 00s 0 DC brake is off at Start 3 28 Group 5 Prohibit frequency parameters Code Parameter Range Step Default Custom Description Page 5 1 Prohibit frequency fmin 0 1 Hz 0 0 Hz 3 28 range 1 low limit par 5 2 5 2 Prohibit frequency fmin fmax 0 1 Hz 0 0 Hz 0 Prohibit range 1 is off 3 28 range 1 high limit 1 1 1 2 5 3 Prohibit frequency fmin 0 1 Hz 0 0 Hz 3 28 range 2 low limit par 5 4 5 4 Prohibit frequency fmin fmax 0 1 Hz 0 0 Hz 0 Prohibit range 2 is off 3
57. 2 Fault stop according par 4 7 3 Fault always coasting stop 7 3 Phase supervision of 0 2 2 2 0 No action 1 21 the motor 2 Fault 7 4 Ground fault protection 0 2 2 2 0 No action 1 21 2 Fault 7 5 Motor thermal protection 0 2 1 2 0 No action 1 22 1 Warning 2 Fault 7 6 Stall protection 0 2 1 1 0 No action 1 22 1 Warning 2 Fault Page 1 10 Standard Application Group 8 Autorestart parameters Code Parameter Range Step Default Custom Description Page 8 1 Automatic restart 0 10 1 0 0 no action 1 23 number of tries 8 2 Automatic restart multi 1 6000 s 1s 30s 1 23 attempt max trial time 8 3 Automatic restart 0 1 1 0 0 Ramp 1 24 start function 1 Flying start Table 1 5 1 Special parameters Groups 2 8 Page 1 11 Standard Application 1 5 2 Description of Group 2 8 parameters 2 1 Start Stop logic selection 0 DIA1 closed contact start forward DIA2 closed contact start reverse See figure 1 5 1 A FWD Output Stop function frequency par 4 7 coasting a UD009K09 Figure 1 5 1 Start forward Start reverse A The first selected direction has the highest priority 2 When DIA1 contact opens the direction of rotation starts to change 3 If Start forward DIA1 and Start reverse DIA2 signals are active simultaneously
58. 2 5 27 ULV Default nominal Parameter 6 4 Field weakening point Parameter 6 6 Default 10 Default nominal frequency of the motor Parameter 6 7 Default 1 3 Parameter 6 5 Parameter 6 3 f Hz Default 5 Hz Figure 2 5 27 Programmable V Hz curve Overvoltage controller Undervoltage controller These parameters allow the over undervoltage controllers to be switched ON or OFF This may be useful in cases where the utility supply voltage varies more than 15 10 and the application requires a constant speed If the controllers are ON they will change the motor speed in over undervoltage cases Overvoltage faster undervoltage slower Over undervoltage trips may occur when controllers are not used Response to the reference fault 0 No response 1 Warning 2 Fault stop mode after fault according to parameter 4 7 3 Fault always coasting stop mode after fault detection A warning or a fault action and message is generated if the 4 20 mA reference signal is used and the signal falls below 4 mA The information can also be programmed via digital output DO1 and via relay outputs RO1 and RO2 Page 2 30 7 2 7 3 7 4 Local Remote Control Application Response to external fault 0 No response 1 Warning 2 Fault stop mode after fault according to parameter 4 7 3 Fault always coasting stop mode after fault detection A warning or a fault action and me
59. 2 function As parameter 3 6 Output freq limit 1 supervision function 0 No 1 Low limit 2 High limit Output freq limit 1 supervision value Note Parameter value can be changed only when the drive is stopped Page 6 10 Pump and fan control Application Code Parameter Range Step Default Custom Description Page 3 11 Output freq limit 2 0 2 1 0 0 No 6 22 supervision function 1 Low limit 2 High limit 3 12 Output freq limit 2 0 0 fmax 0 1 Hz 0 0 Hz 6 22 supervision value par 1 2 3 13 Torque limit 0 2 1 0 0 No 6 23 supervision function 1 Low limit 2 High limit 3 14 Torque limit 0 0 200 0 0 1 100 0 6 23 supervision value XTncx 3 15 Active reference limit 0 2 1 0 0 No 6 23 supervision function 1 Low limit 2 High limit 3 16 Active reference limit 0 0 fmax 0 1 Hz 0 0 Hz 6 23 supervision value par 1 2 3 17 External brake off delay 0 0 100 0s 1 0 5s 6 23 3 18 External brake on delay 0 0 100 0s 1 1 5s 6 23 3 19 Drive 0 2 1 0 0 No 6 23 temperature limit 1 Low limit supervision function 2 High limit 3 20 Drive 10 75 C 1 40 C 6 23 temperature limit 3 21 1 O expander board opt 0 7 1 3 See parameter 3 1 6 21 analog output content 3 22 1 O expander board opt 0 00 10 00 s 0 01 1 00
60. 2 is automatically set to 10 Pl controller actual value selection Actual value 1 Actual value 2 These parameters select the Pl controller actual value Actual value 1 minimum scale Sets the minimum scaling point for Actual value 1 See figure 4 5 6 Actual value 1 maximum scale Sets the maximum scaling point for Actual value 1 See figure 4 5 6 Actual value 2 minimum scale Sets the minimum scaling point for Actual value 2 See figure 4 5 6 Actual value 2 maximum scale Sets the maximum scaling point for Actual value 2 See figure 4 5 6 Error value inversion This parameter allows you to invert the error value of the Pl controller and thus the the operation of the Pl controller A Scaled Scaled input signal input signal 100 Par 2 19 30 Par 2 20 80 76 5 15 3 mA Par 2 19 30 Par 2 20 140 17 7 3 5 mA 1 a Araog 30 100 140inpyt Yo 3 0 8 0 10 0V 10 0 V 0 6 0 16 0 20 0 mA 0 20 0 mA 8 8 16 8 20 0 mA 4 20 0 mA Ch01 2k34 Figure 4 5 6 Examples of actual value scaling of Pl regulator Page 4 19 Pl control Application 2 24 Pl controller minimum limit 2 25 Pl controller maximum limit These parameter set the minimum and maximum values of the Pl controller output Parameter value limits par 1 1 lt par 2 24 lt par 2 2 5 2 26 Direct frequency reference Place B 0 Analog voltage reference from terminals 2 3
61. 20 mA Paraqa p A an A anaE EN lin i 1 i i roe term 3 4 T T gt 1 4mA mA Par 2 9 Par 2 10 UD012K29 Figure 3 5 9 I signal inversion Unfiltered signal 100 4 63 t s gt Par 2 12 UD009K30 Figure 3 5 10 Analog input l filter time Page 3 19 Multi step Speed Control Application 2 13 2 14 Reference scaling minimum value maximum value Scales the basic reference Setting limits par 1 1 lt par 2 13 lt par 2 14 lt par 1 2 If par 2 14 0 scaling is set off See figures 3 5 11 and 3 5 12 output T Output frequency neuen _ _Max freq par 1 2 Max freq par 1 2 par 2 5 4 i i i par 2 4 i eet i L Min freq par 1 1 eames Anal pl input V Min freq par 1 1 1 input V 0 10 Ch012K12 gt 10 Ch012K13 Figure 3 5 11 Reference scaling Free analog input signal Figure 3 5 12 Reference scaling par 2 14 0 Selection of input signal of free analog input an input not used for reference signal 0 Not in use 1 Voltage signal Vin 2 Current signal lin Free analog input signal function Use this parameter to select a function for a free analog input signal 0 Function is not used 100 1 Reducing motor current limit par 1 7 This signal will adjust the maximum motor current between 0 and with parameter 1 7 set max limit See figure 3 5 13 Pa
62. 24V ma Control voltage output Voltage for switches same as 6 C I O ground Ground for reference and controls es Fa Start Stop Contact open stop Source B Direct freq ref Contact closed start A a so Jog speed select Contact open no action programmable Contact closed jog speed pes a eaten Source A B selection Contact open source A is active ral Contact closed source B is active L Common for DIB4 DIB6 Connect to GND or 24V Analog output Programmable par 3 1 READY Output frequency Range 0 20 mA R max 500 Q 2 oo Digital output Programmable par 3 6 READY Open collector lt 50 mA V lt 48 VDC Relay output 1 Programmable par 3 7 220 TT Auxil motor 1 VAG control Relay output 2 Programmable par 3 8 jj e FAULT VAC 4 J Max FAULT ee Figure 6 2 1 Default VO configuration and connection example of the Pump and Fan Control Application with 2 wire transmitter Page 6 2 Pump and fan control Application 6 3 Control signal logic The logic flow of the I O control signals and pushbutton signals from the panel is shown in figure 6 3 1 PARAMETERS 2 26 Source B ref select 2 15 Source A ref select 4 12 Jogging speed ref Freq ref PROGRAMMABLE Source B PUSH BUTTON 2 Reference Source A Actual value selection Uin Pl controller Pt Internal frequency Actual i refere
63. 28 range 2 high limit 1 1 1 2 5 5 Prohibit frequency fmin 0 1 Hz 0 0 Hz 3 28 range 3 low limit par 5 6 5 6 Prohibit frequency fmin fmax 0 1 Hz 0 0 Hz 0 Prohibit range 3 is of 3 28 range 3 high limit 1 1 1 2 Group 6 Motor control parameters Code Parameter Range Step Default Custom Description Page 6 1 Motor control mode 0 1 1 0 0 Frequency control 3 29 1 Speed control 6 2 Switching frequency 1 0 16 0 kHz 0 1 kHz 10 3 6 kHz Dependant on Hp rating 3 29 6 3 Field weakening 30 500 Hz 1 Hz Param 3 29 point 1 11 6 4 Voltage at field 15 200 1 100 3 29 weakening point X Vamot 6 5 V Hz curve midpoint 0 0 fmax 0 1 Hz 0 0 Hz 3 29 frequency 6 6 V Hz curve midpoin 0 00 100 00 0 01 0 00 3 29 voltage X Vnmot 6 7 Output voltage at 0 00 100 00 0 01 0 00 3 29 zero frequency X Vamot 6 8 Overvoltage controller 0 1 1 1 0 Controller is turned off 3 30 1 Controller is operating 6 9 Undervoltage controller 0 1 1 1 0 Controller is turned off 3 30 1 Controller is operating Note Parameter value can be changed only when the drive is stopped Page 3 12 Multi step Speed Control Application Group 7 Protections Code Parameter Range Step Default Custom Description Page 7 1 Response to 0 3 1 0 0 No action 3 30 refe
64. 3 36 Page 3 13 Multi step Speed Control Application Group 8 Autorestart parameters Code Parameter Range Step Default Custom Description Page 8 1 Automatic restart 0 10 1 0 0 not in use 3 36 number of tries 8 2 Automatic restart multi 1 6000 s 1s 30s 3 36 attempt maximum trial time 8 3 Automatic restart 0 1 1 0 0 Ramp 3 37 start function 1 Flying start 8 4 Automatic restart after o 1 1 0 0 No 3 37 undervoltage trip 1 Yes 8 5 Automatic restart after 0 1 1 0 0 No 3 37 overvoltage trip 1 Yes 8 6 Automatic restart after 0 1 1 0 0 No 3 37 overcurrent trip 1 Yes 8 7 Automatic restart after 0 1 1 0 0 No 3 37 reference fault trip 1 Yes 8 8 Automatic restart after 0 1 1 0 0 No 3 37 over undertemperature 1 Yes fault trip Table 3 5 1 Special parameters Groups 2 8 Page 3 14 Multi step Speed Control Application 3 5 2 Description of Groups 2 8 parameters 2 1 Start Stop logic selection 0 DIA1 closed contact start forward DIA2 closed contact start reverse See figure 3 5 1 A FWD Output Stop function frequency par 4 7 coasting DIA1 DIA2 G UD009K09 Figure 3 5 1 Start forward Start reverse 1 The first selected direction has the highest priority 2 When DIA1 contact opens the direction of rotation starts to change
65. 35 deceleration time is too fast high overvoltage spikes at utilit Ground fault Current measurement detected that the Check the motor cables sum of the motor phase current is not zero insulation failure in the motor or the ca bles Inverter fault CX CXL CXS frequency converter has Reset the fault and restart detected faulty operation in the gate again drivers or IGBT bridge If the fault occurs again interference fault contact your Honeywell component failure affiliate Charging switch Charging switch open when START com Reset the fault and restart mand active again interference fault If the fault occurs again component failure contact your Honeywell affiliate Undervoltage DC bus voltage has gone below 65 of In case of temporary the nominal voltage supply voltage break most common reason is failure of the reset the fault and start utility supply again internal failure of the CX CXL CXS Check utility input frequency converter can also cause an If utility supply is correct undervoltage trip an internal failure has occurred Contact Honeywell affiliate vision connection Ea Output phase Current measurement has detected that supervision there is no current in one motor phase F Brake chopper brake resistor not installed Check brake resistor supervision brake resistor broken If resistor is OK the chop brake chopper broken per is broken Contact H well affili our Hone affiliate FC undertem Temperature
66. 5 13 Page 1 18 aa NO Standard Application A fout Hz fout HA fn 4 SG Output frequency S p te Motor speed e Xe e N x Output frequency d S Motor speed DC braking ON 0 1x f See DC braking ON 5 t t S o1 4 9 a t 1xpar 4 9 x a p t x par 4 RUN RoN STOP UD009K21 Figure 1 5 13 DC braking time when stop coasting Stop function 1 ramp After a Stop command the speed of the motor is reduced based on the deceleration ramp parameter If no regeneration occurs due to load inertia DC braking starts at a speed defined by parameter 4 10 The braking time is defined by par 4 9 If the load has a high inertia use an external braking resistor for faster deceleration fout Hz See figure 1 5 14 5H 0 5 Hz t gt Figure 1 5 14 DC braking time t param 4 9 when stop function ramp RUN Prohibit frequency area Low limit High limit In some systems it may be af Hz necessary to avoid certain frequencies because of mechanical resonance problems With these parameters it is possible to set limits for one skip frequency region between 0 Hz l and 120 Hz 500 Hz Accuracy of i i the setting is 0 1 Hz See figure 1 5 15 frequency referenca n Hz T T gt 5 1 5 2 UDO009K24 Figure 1 5 15 Example of prohibit frequency area setting Page 1 19 Standard Ap
67. 5 32 0 40 0 CXL 0200HP V 35 20 0 M6 NEMA 12 8 7 x 25 6 x 11 4 CXL O600HP V 35 60 5 96 125 M7 NEMA 12 14 7 x 39 4 x 13 0 150 CXL 1500HP V 35 150 180 CXL 1750HP V35 __ 200 260 M8 NEMA 12 19 5 x 47 6 x 13 9 CXL 2000HP V 3 5 250 CH ZBOOHP V 35 250 3207 300 M9 NEMA 12 27 6 x 56 1 x 15 4 CXL 3000HP V 35 300 400 400 460 CXL 4000HP V 35 400 480 500 600 CXL 5000P V 35 500 600 H 7 2 2 3 4 5 1 5 1 7 4 0 2 5 7 6 Contact Factory 380 440Vac 10 15 50 60 Hz 3 Input Series CXL NEMA 12 Rated Kilowatts and output current Frame Size Dimensions Constant Torque Variable Torque WxHxD Encl l 3 tne 8 k k 2 CXL0030V34 3 oxLooovaa a M4 NEMA 12 4 7 x 15 4 x 8 5 5 11 Catalog Number CXL 0022 V 3 4 W 2 6 5 o 8 4 CXL 0055 V 3 4 5 13 7 5 18 11 15 M5 NEMA 12 6 2 x 20 3 x 9 4 18 5 CXL 0185 V 3 4 18 5 42 22 48 z CxXL0300V34 30 60 M6 NEMA 12 8 7 x 25 6 x 11 4 84 oo cx os0ov34 45 90 55 CXL 0550 V 3 4 55 110 75 150 150 90 M7 NEMA 12 14 7 x 39 4 x 13 0 cx oso0v34 90 180 110 132 CXL 1320 V 3 4 132 270 160 325 M8 NEMA 12 19 5 x 47 6 x 13 9 309 CxL2000V34 200 410 250 510 315 ae CXL 4000 V 3 4 400 750 500 840 Ict continuous rated input and output current constant torque load max 50C ambient Ivt continuous rated input and output current variable torque load m
68. 6 4 to 100 xV motor 1 11 Nominal frequency of the motor Find the nominal frequency f from the nameplate of the motor This parameter sets the frequency of the field weakening point parameter 6 3 to the same value 1 12 Nominal speed of the motor Find this value n from the nameplate of the motor 1 13 Nominal current of the motor Find the value l from the nameplate of the motor The internal motor protection function uses this value as a reference value 1 14 Supply voltage Set parameter value according to the nominal voltage of the supply Values are pre defined for CX CXL CXS V 3 2 CX CXL CXS V 3 4 CX CXL CXS V35and CX V 36 See table 4 4 1 1 15 Parameter conceal Defines which parameter groups are available 0 all parametergroups are visible 1 only group 1 is visible 1 16 Parameter value lock Defines access to the changes of the parameter values 0 parameter value changes enabled 1 parameter value changes disabled To adjust more of the functions of the Pl Control application see chapter 4 5 to modify the parameters of Groups 2 8 Page 4 7 Pl control Application 4 5 Special parameters Groups 2 8 4 5 1 Parameter tables Group 2 Input signal parameters Parameter DIA2 function terminal 9 Default Custom Description 0 Not used 1 Ext fault closing contact 2 External fault opening contact 3 Run enable 4 Acceler deceler time sel
69. 7 pe o Veijo Karppinen Managing Director The last two digits of the year the CE marking was affixed _97 Page 8 84 Directives EU DECLARATION OF CONFORMITY We Manufacturer s Name Vaasa Control Manufacturer s Address P O BOX 25 Runsorintie 5 FIN 65381 VAASA Finland hereby declares that the product Product name CXS Frequency converter Model number CXS seawall has been designed and manufactured in accordance with the following standards Safety EN 50178 1995 and relevant parts of EN60950 1992 Am 1 1993 Am 2 1993 Am 3 1995 EN60204 1 1996 EMC N50081 2 1993 EN50082 2 1995 EN61800 3 1996 Technical construction file Prepared by Vaasa Control Oy Function Manufacturer Date 03 05 1996 TCF no RP00015 Competent body Name FIMKO LTD Address P O Box 30 S rkiniementie 3 FIN 00211 Helsinki Country Finland and conforms to the relevant safety provisions of the Low Voltage Directive 73 23 EEC as amended by the Directive 93 68 EEC and EMC Directive 89 336 EEC It is ensured through internal measures and quality control that product conforms at all times to the requirements of the current Directive and the relevant standards Vaasa 14 11 1997 9g ee Veijo Karppinen Managing Director The last two digits of the year the CE marking was affixed _97 Page 9 84 Directives EU DECLARATION OF CONFORMITY We Manufacturer s Name Vaasa Control Manufacturer s
70. 9 RUN STOP UD009K23 Figure 3 5 24 DC braking time when stop function ramp Page 3 27 5 1 5 6 Multi step Speed Control Application Execute frequency of DC brake during ramp Stop See figure 3 5 24 DC brake time at start 0 DC brake is not used gt 0 DC brake is active when the start command is given This parameter defines the time before the brake is released After the brake is released the output frequency increases according to the set start function parameter 4 6 and the acceleration parameters 1 3 4 1 or 4 2 4 3 See figure 3 5 25 Figure 3 5 25 DC braking time at start Prohibit frequency area Low limit High limit In some systems it may be necessary to avoid certain frequencies because of mechanical resonance problems With these parameters it is possible to set limits for three skip frequency regions between 0 Hz and 500 Hz The accuracy of the setting is 0 1 Hz See figure 3 5 26 Figure 3 5 26 Example of prohibit frequency area setting A four HZ t 4 7 i gt Par 4 11 lt RUN STOP UDO009K22 Output frequency Hz l i l Reference Hz T T gt UD012K33 Page 3 28 6 1 6 2 DO A Q 6 5 6 6 6 7 Multi step Speed Control Application Motor control mode 0 Frequency control The I O terminal and panel references are frequency V Hz references and the
71. Address P O BOX 25 Runsorintie 5 FIN 65381 VAASA Finland hereby declares that the product Product name CXS Frequency converter Model number CXS C has been designed and manufactured in accordance with the following standards Safety EN 50178 1995 and relevant parts of EN60950 1992 Am 1 1993 Am 2 1993 Am 3 1995 EN60204 1 1996 EMC EN50081 1 2 1993 EN50082 1 2 1995 EN61800 3 1996 Technical construction file Prepared by Vaasa Control Oy Function Manufacturer Date 03 05 1996 TCF no RP00016 Competent body Name FIMKO LTD Address P O Box 30 S rkiniementie 3 FIN 00211 Helsinki Country Finland and conforms to the relevant safety provisions of the Low Voltage Directive 73 23 EEC as amended by the Directive 93 68 EEC and EMC Directive 89 336 EEC It is ensured through internal measures and quality control that product conforms at all times to the requirements of the current Directive and the relevant standards Vaasa 14 11 1997 t T p n E Veijo Karppinen Managing Director The last two digits of the year the CE marking was affixed _97 Page 10 84 Receiving 3 RECEIVING This CX CXL CXS drive has been subjected If the received equipment is not the same as to demanding factory tests before shipment ordered please contact your distributor After unpacking check that the device does immediately not show any signs of damage and that the CX CXL CXS is as ordered
72. Chassis amp NEMA 12 M11 NEMA 1 M12 Chassis amp NEMA 12 M12 NEMA 1 a2 Distance from inverter to inverter in multiple inverter installations oO oa 4 2 2 1 1 Fic CE Hd g tk oa a ot sz 4 4 er g 3 3 a2 1 4 0 5 1 4 3 2 3 1 Sl s S Sia N N N n 2 a o ji k 5 10 3 3 gr Aj Jo P N fo ojatoa oa Contact Factory Protected enclosure with optional cover Minimum allowable space No space available for fan change _ Space for fan change on sides of inverter Table 5 2 1 Installation space dimensions fo Figure 5 2 1 Installation space Required Airflow 075 2 2 3 0 75 5 5 380 Compact NEMA 1 1 75 310 2 15 600 Protected 3 15 230 Compact NEMA 1 5 10 75 185 11 30 380 Protected amp NEMA 1 12 100 10 25 480 Compact NEMA 1 15 40 480 Protected amp NEMA 1 12 20 60 20 230 Compact NEMA 1 15 30 230 Protected amp NEMA 1 12 22 380 Compact NEMA 1 30 218 EZI 50 60 480 Protected amp NEMA 1 12 g 40 78 55 90 383 75 125 480 Chassis amp NEMA 1 12 150 200 765 100 150 200 250 380 Chassis amp NEMA 1 12 175 200 815 400 400 500 480 Chassis amp NEMA 1 12 1736 500 600 2296 400 600 Chassis 700 1100 3473 500 800 Protected enclosure w ith optional cover
73. Competent body Name FIMKO LTD Address P O Box 30 S rkiniementie 3 FIN 00211 Helsinki Country Finland and conforms to the relevant safety provisions of the Low Voltage Directive 73 23 EEC as amended by the Directive 93 68 EEC and EMC Directive 89 336 EEC It is ensured through internal measures and quality control that product conforms at all times to the requirements of the current Directive and the relevant standards Vaasa 12 05 1997 Us om ita Veijo Karppinen Managing Director The last two digits of the year the CE marking was affixed _97 Page 6 84 Directives EU DECLARATION OF CONFORMITY We Manufacturer s Name Vaasa Control Manufacturer s Address P O BOX 25 Runsorintie 5 FIN 65381 VAASA Finland hereby declares that the product Product name CXL Frequency converter Model number CXL l has been designed and manufactured in accordance with the following standards Safety EN 50178 1995 and relevant parts of EN60950 1992 Am 1 1993 Am 2 1993 Am 3 1995 EN60204 1 1996 EMC EN50081 2 1993 EN50082 2 1995 EN61800 3 1996 Technical construction file Prepared by Vaasa Control Oy Function Manufacturer Date 03 05 1996 TCF no RP00013 Competent body Name FIMKO LTD Address P O Box 30 S rkiniementie 3 FIN 00211 Helsinki Country Finland and conforms to the relevant safety provisions of the Low Voltage Directive 73 23 EEC as amended by the Directive 93
74. Control connections 0 53 6 2 1 Control cables 53 6 2 2 Galvanic isolation barriers 53 6 2 3 Digital input function inversion 55 7 Control panel cccccecceeeeseeeeeeeeeeees 56 7 1 Introduction 20 2 ee eeceeeeeeeeeeeeeeeeeeees 56 7 2 Panel operation eeeeeeee 57 7 3 Monitoring Menu cee 58 7 4 Parameter group Menu 60 7 5 Reference Menu occse 61 10 11 12 13 7 6 Programmable push button menu 62 7 7 Active faults menu n 63 7 8 Fault history menu ee 65 7 9 Contrast Menu neccctcciaenees 65 7 10 Active warning display 04 66 7 11 Controlling the motor from the front panel sssssessenessserrserrrrerre 67 7 11 1Control source change from O terminals to the front panel 67 7 11 2 Control source change from panel to VO wscseeratneteteaiscss 67 StH Up esis seceded cede eecees ia teeta aed 68 8 1 Safety precautions 000 68 8 2 Sequence of operation 68 Fault tracing wissiicisienciiucscicisssiadcuscens 71 Basic application c ssseeeeseees 73 10 1 General eeeeeeeeeeeeeeees 73 10 2 Control connections 4 73 10 3 Control signal logic 0 74 10 4 Parameters group 1 eese 75 10 4 1 Descriptions ee 76 10 5 Motor protection functions in the Basic Application eee 79 10 5 1 Motor thermal protection 79 10 5 2 Motor stall warning 79 Syst
75. HH hh Operating hours 2 can be reset with trip counter programmable button 3 v 11 MW hours MWh Total MW hours not resettable v12 MW hours MWh MW hours can be reset with programmable trip counter button 4 v13 Voltage analog input V Voltage of the terminal Vin term 2 v 14 Current analog input mA Current of terminals lin and lin term 4 5 v15 Digital input status gr A v16 Digital input status gr B v 17 Digital and relay output status v18 Control program Version number of the control software v19 Unit nominal power Hp Shows the horsepower size of the unit v20 Pl controller reference Percent of the maximum reference v21 Pl controller actual value Percent of the maximum actual value v22 Pl controller error value o Percent of the maximum error value v23 Pl controller output Hz v24 Number of running auxiliary drives v25 Motor temperature rise 100 temperature of motor has risen to nominal Table 6 6 1 Monitored items 1 DD full days dd decimal part of a day 2 HH full hours hh decimal part of an hour Page 6 40 Pump and fan control Application 6 7 Panel reference The Pump and fan control application has an extra reference r2 for Pl controller on the panel s reference page See table 6 7 1 Refrence Reference Range Step Function number name ri Frequency fan fmax 0 01 Hz Reference for panel control and reference I O terminal Source B reference r2 Pl controller 00 100
76. Output freq limit 0 No supervision function 1 Low limit 2 High limit Output freq limit supervision value O expander option board 0 7 As parameter 3 1 analog output function O expander option board 10 1000 As parameter 3 5 analog output scale Group 4 Drive control parameters Code Parameter Range Step Default Custom Description Page 4 1 Acc Dec ramp 1 shape 0 0 10 0s 0 1s 0 0s 0 Linear 1 17 gt 0 S curve acc dec time 4 2 Acc Dec ramp 2 shape 0 0 10 0s 0 1s 0 0s 0 Linear 1 17 gt 0 S curve acc dec time Acceleration time 2 0 1 3000 0 s 0 1s 10 0s 1 17 4 4 Deceleration time 2 0 1 3000 0 s 0 1s 10 0s 1 17 4 5 Brake chopper 0 2 1 0 0 Brake chopper not in use 1 17 1 Brake chopper in use 2 External brake chopper 4 6 Start function o 1 1 0 0 Ramp 1 17 1 Flying start 4 7 Stop function 0 1 1 0 0 Coasting 1 18 1 Ramp 4 8 DC braking current 0 15 1 5 x 0 1A 0 5 1 18 Incx A X Incx 4 9 DC braking time at Stop 0 00 250 00 s 0 01 s 0 00 s 0 DC brake is off 1 18 Note Parameter value can be changed only when the drive is stopped Page 1 9 Standard Application Group 5 Prohibit frequency parameters Code Parameter
77. Parameter Range Step Default Custom Description Page 6 1 Motor control mode 0 1 1 0 0 Frequency control 4 27 1 Speed control 6 2 Switching frequency 1 0 16 0 kHz 0 1 kHz 10 3 6kH7 Depends on Hp rating 4 27 6 3 Field weakening point 30 500 Hz 1 Hz Param 4 28 1 11 6 4 Voltage at field 15 200 1 100 4 28 weakening point X Vnmot 6 5 V Hz curve mid 0 0 fmax 0 1 Hz 0 0 Hz 4 28 point frequency 6 6 V Hz curve mid 0 00 100 00 0 01 0 00 4 28 point voltage X Vamot 6 7 Output voltage at 0 00 100 00 0 01 0 00 4 28 zero frequency X Vnmot 6 8 Overvoltage controller 0 1 1 1 0 Controller is not operating 4 28 1 Controller is in operation 6 9 Undervoltage controller 0 1 1 1 0 Controller is not operating 4 28 1 Controller is in operation Note Parameter value can be changed only when the drive is stopped Page 4 12 Group 7 Protections Pl control Application Code Parameter Range Step Default Custom Description Page 7 1 Response to 0 3 1 0 0 No action 4 29 reference fault 1 Warning 2 Fault stop according to par 4 7 3 Fault always coasting stop 7 2 Response to 0 3 1 2 0 No action 4 29 external fault 1 Warning 2 Fault stop according to par 4 7 3 Fault always coasting stop 7 3 Phase supervision of 0 2 2 2 0 No
78. WD WD DW WD ODO OO CO O CO O O CO O GO D P N COC COC CO O CO OS 1 olal ol N G1 BY Go Po gt SO OO Of CO OC OG OG O O a Xj Ly Ly Ly Ly Ly Ly LY Ly TL UU VU VU VU U Ul Ul UV U L lt lt lt lt lt lt lt lt lt lt lt lt CO CO CO w CO CO Go Go GO GO O1 O1 O1 C1 O1 O1 C1 C1 onj O1 O1 O11 7 3 5 4 5 6 5 CXS 0040 V 3 4 CXS 0055 V 3 4 CXS 0075 V 34 CXS 0110 V 34 CXS 0150 V 3 4 1 5 2 5 5 1 5 5 k 25s ir HERAN 15 45 22 22 65 3 s ee a 4 10 55 55 3 75 7 11 a 2 es Bele 30 5 5 5 5 10 13 18 24 2 42 48 o 13 18 24 32 42 48 Oo F F 2 Page 19 84 Technical Data 200 240 Vac 10 15 50 60 Hz 3 Input Series CXS compact NEMA 1 Rated Horsepower and output current Dimensions Catalog Constant Torque Variable Torque Frame Size WxHxD eal Enclosure Style lbs Number one CXS 0007HP v 32 0 75 36 1 47 cx ooe V3 2 1 47 15 56 M3 Compact 47 14 54 cx ose vs 15 56 2 7 cx oop v32 3 10 CXS OO4OHPVS2 58 16 M4B Compact 3 4s4x81 154 CXS O100HP V3 2 EA CXS 0150HP V 32 15 43 20 57 NEMA i 7 3 x 22 8 x 8 5 33 1 CXS 0200HP V 3 2 20 57 25 70 200 240 Vac 10 15 50 60 Hz 3 Input Series CX standard protected chassis Rated Horsepower and output current Dimens
79. action 2 31 external fault 1 Warning 2 Fault stop according to par 4 7 3 Fault always coasting stop 7 3 Phase supervision of 0 2 2 2 0 No action 2 31 the motor 2 Fault 7 4 Ground fault protection 0 2 2 2 0 No action 2 31 2 Fault 7 5 Motor thermal protection 0 2 1 2 0 No action 2 32 1 Warning 2 Fault 7 6 Motor thermal protection 50 0 150 0 1 0 100 0 2 32 break point current X InmoTOR 7 7 Motor thermal protection 5 0 150 0 1 0 45 0 2 32 zero frequency current X InmMoTOR 7 8 Motor thermal protection 0 5 300 0 0 5 17 0 Default value is set according 2 33 time constant minutes min min to motor nominal current 7 9 Motor thermal protection 10 500 Hz 1 Hz 35 Hz 2 33 break point frequency 7 10 Stall protection 0 2 1 1 0 No action 2 34 1 Warning 2 Fault 7 11 Stall current limit 5 0 200 0 1 0 130 0 2 34 X InMoTOR 7 12 Stall time 2 0 120 0s 1 0s 15 05 2 34 7 13 Maximum stall frequency 1 fmax 1 Hz 25 Hz 2 34 7 14 Underload protection 0 2 1 0 0 No action 2 35 1 Warning 2 Fault 7 15 Underload prot field 10 0 150 0 1 0 50 0 2 35 weakening area load X TaMoTOR 7 16 Underload protection 5 0 150 0 1 0 10 0 2 35 zero frequency load X TamoTOR 7 17 Underload time 2 0 600 0s 1 0s 20 0s 2 36 Page 2 13 Local Remote Control Application Group 8 Autorestart parameters
80. and 3 16 17 External brake control External brake ON OFF control with programmable delay par 3 17 and 3 18 18 Control from I O terminals External control mode selected with prog pushbutton 2 19 Drive Temperature on drive goes outside the set temperature supervision limits par 3 19 and 3 20 20 Unrequested rotation direction Rotation direction of the motor shaft is different from the requested one 21 External brake control inverted External brake ON OFF control par 3 17 and 3 18 output active when brake control is OFF Table 5 5 2 Output signals via DO1 and output relays RO1 and RO2 Output frequency limit 1 supervision function Output frequency limit 2 supervision function 0 No supervision 1 Low limit supervision 2 High limit supervision If the output frequency goes under over the set limit 3 10 3 12 this function generates a warning message via the digital output DO1 or via a relay output RO1 or RO2 depending on the settings of the parameters 3 6 3 8 Output frequency limit 1 supervision value Output frequency limit 2 supervision value The frequency value to be supervised by the parameter 3 9 3 11 See figure 5 5 15 Page 5 24 Multi purpose Control Application 3 13 Torque limit supervision function 0 No supervision Par 3 9 2 1 Low limit supervision 2 High limit supervision If the calculated torque value goes Par3 10 j4
81. are shown in the figure 2 2 1 The control signal logic is shown in the figure 2 3 1 Programming of I O terminals is explained in The Local Remote Control Application canbe chapter 2 5 Special parameters activated from the Group 0 by setting the 2 2 Control I O Local reference potentiometer Terminal Signal Description Reference output Voltage for a potentiometer etc Analog input Source B frequency reference L 7 voltage programmable range 0 10 V DC ar rae I O ground Ground for reference and controls Remote reference Analog input Source A frequency reference 0 4 20 mA i current programmable range 0 20 mA Remote control Control voltage output Voltage for switches etc max 0 1 A 24 V I O ground Ground for reference and controls Se Source A Start forward Contact closed start forward programmable SS Source A Start reverse Contact closed start reverse Programmable ee eee Fault reset Contact open no action Remote control ground programmable Contact closed fault reset A A E Common for DIA1 DIA3 Connect to GND or 24V DEEA Control voltage output Voltage for switches same as 6 I O ground Ground for reference and controls Loo lat g T Source B Start forward Contact closed start forward programmable TE Source B Start reverse Contact closed start reverse programmable m
82. button Progr button1 Multi step speed sel 2 Start forward Start Stop programmable Programmable Start Stop and reverse Start reverse logic Reverse programmable Fault reset input External fault input programmable control line signalline Figure 1 3 1 Control signal logic of the Standard Application PROGRAMMABLE PUSH BUTTON 2 Internal frequency reference Internal Start Stop Internal reverse Internal fault reset r UD9ABKS Koo Page 1 3 Standard Application 1 4 PARAMETERS GROUP 1 1 4 1 Parameter table Parameter Minimum frequency O0 fmax Default Custom Description Maximum frequency fmin 120 500 Hz Acceleration time 1 0 1 3000 0 s Time from fmin 1 1 to fmax 1 2 Deceleration time 1 0 1 3000 0 s Time from fmax 1 2 to fmin 1 1 Multi step speed reference 1 fmin fmax Multi step speed reference 2 fmin fmax Current limit 0 1 2 5 x Incx Output current limit A of the unit V Hz ratio selection 0 2 0 Linear 1 Squared 2 Programmable V Hz ratio V Hz optimization 0 1 0 None 1 Automatic torque boost Nominal voltage of the motor 180 690 V 230 V 380 V 480 V 575 V CX CXL CXS V 3 2 CX CXL CXS V 3 4 CX CXL CXS V 35 CXV36 Nominal frequenc of the motor 30 500 Hz 60 Hz
83. can be used to control one variable speed drive and 0 3 auxiliary drives The Pl controller of the CX CXL CXS controls the drive speed and provides control signals to Start and Stop one to three auxiliary drives to control the total flow 6 2 Control I O Pl controller reference value Terminal Reference output The application has two control sources on the I O terminals Source A is Pump and fan control and source B is direct frequency reference The control source is selected with DIB6 input NOTE Remember to connect the CMA and CMB inputs Description Voltage for a potentiometer etc 2 wireL_ Analog input voltage programmable Pl controller reference value range 0 10 V DC transmitter I O ground Ground for reference and controls Actual oat Se value 1 04 20m Analog input current programmable Pl controller actual value range 0 20 mA Control voltage output Voltage for switches etc max 0 1 A p C Control voltage ground Ground for reference and controls Foe Sep Start Stop Contact open stop lt Source A Pl controller Contact closed start External fault Contact open no fault aE Eo fi programmable Contact closed fault l TE ahis Fault reset Contact open no action programmable Contact closed fault reset L Common for DIA1 DIA3 Connect to GND or
84. chapter 10 2 Remember to connect the common If a different I O configuration or different operational functions from the basic configuration are required see chapter 12 Application package for a more suitable configuration For a more detailed description see the separate application manual At least the following 10 steps of the Quick Start Guide must be done during installation and startup If any problem occurs please call the telephone number listed on the back of this manual for assistance terminals CMA and CMB See figure 10 2 1 of the digital input groups For instructions on how to use the control panel see chapter 7 The basic application has only 10 parameters in addition to the motor rating plate data the parameter and application package lock All of these have default values To ensure proper operation verify the nameplate data of both the motor and CX CXL CXS nominal voltage of the motor nominal frequency of the motor nominal speed of the motor nominal current of the motor supply voltage Parameters are explained in chapter 10 4 Follow the start up instructions see chapter 8 10 Your CX CXL CXS is now ready for use Honeywell is not responsible for the use of the frequency converter differently than noted in these instructions Honeywell Users Manual Excel VRL CX CXL CXS Constant and variable torque Variable Speed Drives for induction motors
85. compact NEMA1 CXS 0050 0150HP V 3 5 Page 52 84 Wiring 6 1 5 Cable and motor insulation checks 1 Motor cable insulation checks Disconnect the motor cable from the terminals U V and W of the CX CXL CXS unit and from motor Measure the insulation resistance of the motor cable between each phase conductor and between each phase conductor and the protective ground conductor The insulation resistance must be gt 1MQ 2 Utility cable insulation checks Disconnect the utility cable from terminals L1 L2 and L3 of the CX CXL XS unit and from the utlity Measure the insulation resistance of the utility cable between each phase conductor and between each phase conductor and the protective ground conductor The insulation resistance must be gt 1MQ 3 Motor insulation checks Disconnect the motor cable from the motor and open any bridging connections in the motor connection box Measure insulation resistance of each motor winding The measurement voltage has to be at least equal to the utility voltage but not exceeding 1000V The insulation resistance must be gt 1MQ 6 2 Control connections Basic connection diagram is shown in the figure 6 2 1 The functionality of the terminals for the Basic application is explained in chapter 10 2 If one of the alternative applications is selected check the application manual for the functionality of the terminals for that application 6 2 1 Control cables The contro
86. contact open Forward Can be used for reversing if contact closed Reverse parameter 2 1 has value 3 2 3 Reference offset for current input 0 No offset 1 Offset 4 mA provides supervision of zero level signal The response to reference fault can be programmed with the parameter 7 1 2 4 2 5 Reference scaling minimum value maximum value Setting value limits 0 lt par 2 4 lt par 2 5 lt par 1 2 If parameter 2 5 0 scaling is set off See figures 1 5 4 and 1 5 5 Page 1 13 Standard Application A Output Output frequency frequency _ _Max freq par 1 2 Max freq par 1 2 z Analo Anal f Min freq par 1 1 input NI 7 Min freq par 1 1 input V gt gt 0 10 cho12Kk12 O 10 Ch012K13 Figure 1 5 4 Reference scaling Figure 1 5 5 Reference scaling parameter 2 5 0 2 6 Reference invert A Output Inverts reference signal frequency max ref signal min set freq T Max freq par 1 2 min ref signal max set freq par 2 5 par 2 4 7 Min freq par 1 1 i aoe gt 0 max Ch012K14 Figure 1 5 6 Reference invert 2 7 Reference filter time 7 Filters out disturbances from the incoming reference signal A long filtering time makes regulation 100 1 response slower See figure 1 5 7 Unfiltered signal Filtered signal 63 J t s gt UD009K15 Figure 1 5 7 Reference
87. determined with the time constant parameter 7 8 The larger the motor the longer it takes to reach the final temperature The thermal stage of the motor can be monitored through the display Refer to the table for monitoring items User s Manual table 7 3 1 CAUTION The calculated model does not protect the motor if the cooling of the motor is reduced either by blocking the airflow or due to dust or dirt 7 5 7 6 7 7 Motor thermal protection Operation 0 Not in use 1 Warning 2 Trip function Tripping and warning will give a display indication with the same message code If tripping is selected the drive will stop and activate the fault stage Deactivating the protection by setting this parameter to 0 will reset the thermal stage of the motor to 0 Motor thermal protection break point current The current can be set between 50 0 150 0 xX limotor This parameter sets the value for thermal current at frequencies above the break point on the thermal current curve Refer to the figure 4 5 20 The value is set as a percentage of the motor nameplate nominal current parameter 1 13 not the drive s nominal output current The motor s nominal current is the current which the motor can withstand in direct on line use without being overheated If parameter 1 13 is adjusted this parameter is automatically restored to the default value Setting this parameter or parameter 1 13 does not affect the
88. e g a potentiometer 1 Analog current reference trom terminals 4 5 e g a transducer 2 Panel reference is the reference set from the Reference Page REF Reference r1 is the Place B reference see chapter 6 3 Reference value is changed with digital input signals DIA2 and DIAS switch in DIA2 closed frequency reference increases switch in DIA3 closed frequency reference decreases Speed of the reference change can be set with the parameter 2 3 4 Same as setting 3 but the reference value is set to the minimum frequency par 1 1 each time the drive is stopped When the value of the parameter 1 5 is set to 3 or 4 value of the parameter 2 1 is automatically set to 4 and value of the parameter 2 2 is automatically set to 10 2 27 Source B reference scaling minimum value maximum value 2 28 Setting limits 0 lt par 2 27 lt par 2 28 lt par 1 2 If par 2 28 0 scaling is set off See figures 4 5 7 and 4 5 8 In the figures below the voltage input V with signal range 0 10 V is selected for source B reference Output Hz Output Hz frequency frequency Max freq par 1 2 Par 2 28 Par 2 27 1 1 Analog f Analog i V Min freq par 1 1 input V input f q p input p Min freq par 1 1 0 10 0 10 h01 x35 Figure 4 5 7 Reference scaling Figure 4 5 8 Reference scaling par 2 28 0 Page 4 20 3 1 3 2 3 3 3 4 3 5 Pl control A
89. fn from the nameplate of the motor Nominal speed of the motor 1 20000 rpm 1720 rpm Nn from the nameplate of the motor Nominal current of the motor 2 5 X Incx Incx I from the nameplate of the motor Supply voltage 208 240 230 V CX CXL CXS V 3 2 380 440 380 V CX CXL CXS V 3 4 380 500 480 V CX CXL CXS V 35 525 690 575 V CXV36 Parameter conceal 0 1 0 Visibility of the parameters 0 all parameter groups visible 1 only group 1 is visible Parameter value lock Disables parameter changes 0 changes enabled 1 changes disabled Basic frequency reference selection Table 1 4 1 Group 1 basic parameters 0 analog input Vn 1 analog input In 2 reference from the panel Note Parameter value can be changed only when the drive is stopped If 1 2 gt motor synchr speed check suitability for motor and drive system Selecting 120 Hz 500 Hz range see page 1 5 Default value for a four pole motor and a nominal size drive Page 1 4 Standard Application 1 4 2 Description of Group 1 parameters 1 1 1 2 Minimum maximum frequency Defines the frequency limits of the drive The default maximum value for parameters 1 1 and 1 2 is 120 Hz By setting the value of the parameter 1 2 to 120 Hz when the drive is stopped RUN indicator not lit parameters 1 1 and 1 2 a
90. for the direction If Start forward and Start reverse are both activated when the control source is changed from the panel to the I O terminals then Start forward will be selected for the direction If both directions are selected the first selected direction has higher priority than the second selected Page 74 84 Basic Application 10 4 Parameters Group 1 Parameter Minimum frequency O fmax Default Customer Description Maximum frequency fmin 120 500 Hz Acceleration time 0 1 3000 0s Time from fmin 1 1 to fmax 1 2 Deceleration time 0 1 3000 0 s Time from fmax 1 2 to fmin 1 1 Multi step speed reference 1 fmin fmax 1 1 1 2 Multi step speed reference 2 fmin tmax 1 1 1 2 Current limit 0 1 2 5 x Incx Output current limit A of the unit V Hz ratio selection 0 1 0 Linear 1 Squared V Hz optimization 0 1 0 None 1 Automatic torque boost Nominal voltage of the motor 180 690 V 230 V CX CXL CXS V 32 380 V CX CXL CXS V 34 480 V CX CXL CXS V 35 600 V CXV36 Nominal frequency of the motor 30 500 Hz 60 Hz f from the nameplate of the motor Nominal speed of the motor 1 20000 rpm 1720 rpm Nn from the nameplate of the motor Nominal current of the motor 2 5xX Incx Incx from the nameplate of the motor Supply voltage 20
91. frequency 6 6 V Hz curve mid 0 00 100 00 0 01 0 00 6 28 point voltage X Vamot 6 7 Output voltage at 0 00 100 00 0 01 0 00 6 28 zero frequency X Vamot 6 8 Overvoltage controller 0 1 1 1 0 Controller is not operating 6 29 1 Controller is in operation 6 9 Undervoltage controller 0 1 1 1 0 Controller is not operating 6 29 1 Controller is in operation Note Parameter value can be changed only when the drive is stopped Page 6 12 Group 7 Protections Pump and fan control Application Code Parameter Range Step Default Custom Description Page 7 1 Response to 0 3 1 0 0 No action 6 29 reference fault 1 Warning 2 Fault stop according to par 4 7 3 Fault always coasting stop 7 2 Response to 0 3 1 2 0 No action 6 29 external fault 1 Warning 2 Fault stop according to par 4 7 3 Fault always coasting stop 7 3 Phase supervision of 0 2 2 2 0 No action 6 29 the motor 2 Fault 7 4 Ground protection 0 2 2 2 0 No action 6 29 2 Fault 7 5 Motor thermal protection 0 2 1 2 0 No action 6 30 1 Warning 2 Fault 7 6 Motor thermal protection 50 0 150 0 1 0 100 0 6 30 break point current X InMoTOR 7 7 Motor thermal protection 5 0 150 0 1 0 45 0 6 31 zero frequency current X InmoTOR 7 8 Motor thermal protection 0 5 300 0 0 5 17
92. frequency reference increases switch in DIA3 closed frequency reference decreases Speed of the reference change can be set with the parameter 2 3 4 Same as setting 3 but the reference value is set to the minimum frequency par 1 1 each time the drive is stopped When the value of parameter 1 5 is set to 3 or 4 the value of parameter 2 1 is automatically set to 4 and the value of parameter 2 2 is automatically set to 10 6 Pl controller actual value selection 7 Actual value 1 Actual value 2 These parameters select the Pl controller actual value 2 19 Actual value 1 minimum scale Sets the minimum scaling point for Actual value 1 See figure 6 5 4 2 20 Actual value 1 maximum scale Sets the maximum scaling point for Actual value 1 See figure 6 5 4 A Scaled i I input signal Scat pal 100 pa 100 Par 2 19 30 Par 2 20 80 76 5 15 3 mA Par 2 19 30 Par 2 20 140 1 1 Analog Analog 0 80 100 input input 4 3 0 10 0 V 10 0 V 0 6 0 16 0 20 0 mA 0 20 0 mA 8 8 20 0 mA 4 20 0 mA Ch012K34 Figure 6 5 4 Examples about the scaling of actual value signal 2 21 Actual value 2 minimum scale Sets the minimum scaling point for Actual value 2 2 22 Actual value 2 maximum scale Sets the maximum scaling point for Actual value 2 Page 6 19 Pump and fan control Application 2 23 Error value inversion This parameter allows you to invert the erro
93. function frequency par 4 7 coasting DIA2 UD009K09 G Figure 5 5 1 Start forward Start reverse The first selected direction has the highest priority When DIA1 contact opens the direction of rotation starts to change If Start forward DIA1 and Start reverse DIA2 signals are active simultaneously the Start forward signal DIA1 has priority DIA1 closed contact start open contact stop DIA2 closed contact reverse open contact forward See figure 5 5 2 A FWD Output Stop function frequency par 4 7 coasting REV DIA1 DAS ee rt ee oe aN ee oe UD012K10 Figure 5 5 2 Start Stop reverse Page 5 16 Multi purpose Control Application 2 DIA1 closed contact DIA2 closed contact 3 3 wire connection pulse control DIA1 closed contact start pulse DIA2 closed contact stop pulse DIA3 can be programmed for reverse command See figure 5 5 3 start open contact stop start enabled open contact start disabled A FWD Output Stop function If Start and Stop pulses are frequency par 4 7 simultaneous the Stop pulse coasting overrides the Start pulse Amz DIA1 ee aes Start gt min 50 ms UDOO9K11 DIA2 2 a2 Stop Figure 5 5 3 Start pulse Stop pulse DIA3 function 1 External fault closing contact Fault is shown and motor is stopped when the input is active 2 External fault opening contac
94. input term 4 2 Set reference from the panel reference r1 3 Signal from internal motor pot 4 Signal from internal motor pot reset if CX CXL CXS stopped Source B reference scaling minimum value Selects the frequency that corresponds to the min reference signal Source B reference scaling maximum value Selects the frequency that corresponds to the max reference signal 0 Scaling off gt 0 Scaled maximum value Note Parameter value can be changed only when the drive is stopped Page 4 9 Pl control Application Group 3 Output and supervision parameters Parameter Default Custom Description Analog output function 1 0 Not used 1 O P frequency O fmax 2 Motor speed 0 max speed 3 O P current 0 2 0 x Incx 4 Motor torque 0 2 x Tymot Scale 100 5 Motor power 0 2 x Prmot 6 Motor voltage 0O 100 xVpmot 7 DC link volt 0 1000 V Analog output filter time 0 00 10 00 s Analog output inversion 0 1 0 Not inverted 1 Inverted Analog output minimum 0 1 0 0mA 1 4mA Analog output scale 10 1000 Digital output function 0 21 0 Not used 1 Ready 2 Run 3 Fault 4 Fault inverted 5 CX overheat warning 6 External fault or warning 7 Reference fault or warning 8 Warning 9 Reversed 10 Jog speed
95. larger the motor the longer it takes to reach the final temperature The thermal stage of the motor can be monitored through the display Refer to the table for monitoring items User s Manual table 7 3 1 CAUTION The calculated model does not protect the motor if the cooling of the motor is reduced either by blocking the airflow or due to dust or dirt 7 5 Motor thermal protection Operation 0 Not in use 1 Warning 2 Trip function Tripping and warning will give a display indication with the same message code If tripping is selected the drive will stop and activate the fault stage Page 3 31 7 6 7 7 Multi step Speed Control Application Deactivating the stall protection by setting the parameter to 0 will reset the stall time counter to zero Motor thermal protection break point current The current can be set between 50 0 150 0 x limotor This parameter sets the value for thermal current at frequencies above the break point on the thermal current curve Refer to the figure 3 5 28 The value is set as a percentage of the motor nameplate nominal current parameter 1 13 not the drive s nominal output current The motor s nominal current is the current which the motor can withstand in direct on line use without being overheated If parameter 1 13 is adjusted this parameter is automatically restored to the default value Setting this parameter or parameter 1 13 does not affect the ma
96. live even if the motor is not running Do not make any connections when the CX CXL CXS drive is 3 connected to the utility line 4 After disconnecting the utility wait until the cooling fan on the unit stops and the indicators in the panel are turned off if no panel check the indicators on the cover Wait at least 5 minutes before doing any work on the CX CXL CXS drive connections Do not open cover before this time has run out The control I O terminals are isolated from the utility potential but 5 the relay outputs and other I O s if jumper X4 is in OFF position see fig 6 2 2 1 may have dangerous external voltages connected even if the power is off from the CX CXL CXS drive 6 Before connecting the utility make sure that the cover of the CX CXL CXS drive is closed 8 2 Sequence of operation 1 Read and follow the safety precautions 2 After installation ensure that the Drive and motor are connected to ground Utility and motor cables are in accordance with the installation and connection instructions chapter 6 1 Control cables are located as far as possible from the power cables table 6 1 3 1 shields of the control cables are connected to the protective ground and wires do not have contact with any electrical components in the CX CXL CXS The common input of digital input groups is connected to 24 V or ground of the I O terminal or external supply See 6 2 3 Page 68 84 Startup 3 Check the qua
97. low frequencies The boost voltage increase depends on the motor type and horsepower Automatic torque boost can be used in applications where starting torque due to starting friction is high e g in conveyors Page 1 6 10 11 12 13 14 15 16 17 Standard Application NOTE In high torque low speed applications it is likely that the motor will overheat If the motor has to run for a prolonged time under these conditions Ix special attention must be paid to cooling the motor Use external cooling for the motor if the operating temperature rise is too high Nominal voltage of the motor Find this value from the nameplate of the motor This parameter sets the voltage at the field weakening point parameter 6 4 to 100 x V aimotor Note lf the nominal motor voltage is lower than the supply voltage check that the insulation level of the motor is adequate Nominal frequency of the motor Find the nominal frequency f from the nameplate of the motor This parameter sets the field weakening point parameter 6 3 to the same value Nominal speed of the motor Find this value n from the nameplate of the motor Nominal current of the motor Find the value from the nameplate of the motor The internal motor protection function uses this value as a reference value Supply voltage Set parameter value according to the nominal voltage of the supply Values are predefined for CX CXL CXS V 3
98. maximum output current of the drive Parameter 1 7 alone determines the maximum output current of the drive Motor thermal protection zero frequency current The current can be set between 10 0 150 0 xX Inmotor This parameter sets the value for thermal current at zero frequency Refer to the figure 4 5 20 The default value is set assuming that there is no external fan cooling the motor If an external fan is used this parameter can be set to 90 or higher Page 4 30 Pl control Application 7 8 7 9 The value is set as a percentage value of the motor s nameplate A nominal current parameter 1 13 Current not the drive s nominal output partt 7 current The motor s nominal current is the current which the Par 7 6 4 motor can stand in direct on line use without being overheated Overload area If you change the parameter 1 13 this parameter is automatically restored to the default value Par 7 7 Setting this parameter or parameter 1 13 does not affect to the maximum output current of the drive Parameter 1 7 alone determines the maximum output current of the drive f Hz gt T Par 7 9 UMCH7_91 Figure 4 5 20 Motor thermal current I curve Motor thermal protection time constant This time can be set between 0 5 300 minutes This is the thermal time constant of the motor The larger the motor the greater the time constant The time constant is defined as
99. motor s nameplate data parameter 1 13 the motor s nominal current and the drive s nominal current Icy are used to find the scaling ratio for the internal torque value If other than standard motor is used with the drive the accuracy of the torque calculation is decreased Underload protection Operation 0 Not in use 1 Warning 2 Fault Tripping and warning will give a display indication with the same message code If tripping is set active the drive will stop and activate the fault stage Deactivating the protection by setting this parameter to 0 will reset the underload time counter to zero Underload protection field weakening area load AT The torque limit can be set ii between 20 0 150 x Tnmotor This parameter is the value for the minimum allowed torque when the output frequency is above the field weakening point Par 7 15 Refer to the figure 6 5 22 If parameter 1 13 is adjusted Par 7 16 this parameter is automatically Underload area restored to its default value f Hz gt Field weakening ChCH7_15 point par 6 3 Figure 6 5 22 Setting of minimum 5 Hz load Underload protection zero frequency load Torque limit can be set between 10 0 150 x Trmotor This parameter is the value for the minimum allowed torque with zero frequency Refer to the figure 6 5 22 If parameter 1 13 is adjusted this parameter is automatically restored to its default value Unde
100. of heat sink below 10 C eee perature F1 F2 F3 F4 F5 F9 F10 F11 12 13 Page 71 84 Fault tracing Fault Fault Possible cause Checking codes F14 FC Temperature of heatsink over Check the cooling air flow overtemperature 75 C Check that the heat sink is clean For Compact NEMA 1 over 80 Check the ambient temperature C Check that the switching frequency is not too high for the ambient temperature and load F15 Motor stalled The motor stall protection has Check the motor tripped F16 Motor The CX CXL CXS motor Decrease motor load overtemperature temperature calculating model Check the temperature model has calculated a motor parameters if the motor wasn t too overtemperature hot F17 Motor underload The motor underload protection Check motor and possible belts etc has tripped F18 Analog input Component failure on the control Contact your Honeywell affiliate hardware fault card F19 Option board Reading of the option board has Check the installation of the board identification failed If the installation is OK contact your Honeywell affiliate F20 10 V voltage 10 V reference shorted on the Check the wiring connected to the reference control card or on an option 10 V reference board F21 24 V supply 24 V supply shorted on the Check the wiring connected to the control card or on an option 24 V reference board F22 EEPROM Parameter restoring error
101. parameters 3 6 3 8 3 19 Drive temperature limit supervision function 0 No supervision 1 Low limit supervision 2 High limit supervision If the temperature of the drive goes under over the set limit 3 20 this function generates a warning message via the digital output DO1 or via a relay output RO1 or RO2 depending on the settings of the parameters 3 6 3 8 3 20 Drive temperature limit value The temperature value to be supervised by the parameter 3 19 Page 5 25 Multi purpose Control Application a tore Par 3 17 toy Par 3 18 External BRAKE OFF l 1 Digital or ON relay output 1 i DIA1 RUN FWD STOP DIA2 RUN REV STOP t UD012K45 b tore Par 3 17 ton Par 3 18 External ON 1 relay output i DIA1 START PULSE i I DIA2 STOP PULSE Figure 5 5 16 External brake control a Start Stop logic selection par 2 1 0 1 or 2 b Start Stop logic selection par 2 1 3 Acc Dec ramp 1 shape Acc Dec ramp 2 shape gt e N The acceleration and deceleration ramp shape can be programmed with these parameters Setting the value 0 gives you a linear ramp shape The output frequency immediately follows the input with a ramp time set by parameters 1 3 1 4 4 3 4 4 for Acc Dec time 2 Setting 0 1 10 seconds for 4 1 A 4 2 causes an S shaped ramp Hz The speed changes are smooth Parameter 1 3 1 4 4 3 4 4 a
102. rise is too high Nominal voltage of the motor Find this value V from the nameplate of the motor This parameter sets the voltage at the field weakening point parameter 6 4 to 100 x V Nominal frequency of the motor nmotor Find then nominal frequency f from the nameplate of the motor This parameter sets the field weakening point parameter 6 3 to the same value Nominal speed of the motor Find this value n from the nameplate of the motor Nominal current of the motor Find the value from the nameplate of the motor The internal motor protection function uses this value as a reference value Supply voltage Set parameter value according to the nominal voltage of the supply Values are pre defined for CX CXL CXS V 3 2 CX CXL CXS V 3 4 CX CXL CXS V 35 and CX V 36 See table 3 4 1 Parameter conceal Defines which parameter groups are available 0 all parameter groups are visible 1 only group 1 is visible Parameter value lock Defines access to the changes of the parameter values 0 parameter value changes enabled 1 parameter value changes disabled Page 3 7 Multi step Speed Control Application 1 17 1 23 Multi step speed reference 1 7 These parameter values define the Multi step speeds selected with the DIA4 DIB5 and DIB6 digital inputs These values are automatically limited between minimum and maximum frequency par 1 1 1 2 Speed Multi step speed select 1 Mu
103. s See parameter 3 2 6 21 analog output filter time 3 23 1 O expander board opt 0 1 1 0 See parameter 3 3 6 21 analog output inversion 3 24 1 O expander board opt 0 1 1 0 See parameter 3 4 6 21 analog output minimum 3 25 I O expander board opt _ 10 1000 1 100 See parameter 3 5 6 21 analog output scale Group 4 Drive control parameters Code Parameter Range Step Default Custom Description Page 4 1 Acc dec ramp 1 shape 0 0 10 0s 0 15 0 0s 0 Linear 6 24 gt 0 S curve acc dec time 4 2 Acc dec ramp 2 shape 0 0 10 0s 0 15 0 0s 0 Linear 6 24 gt 0 S curve acc dec time 4 Acceleration time 2 0 1 3000 0 s 0 1 s 10 0 s 6 25 4 Deceleration time 2 0 1 3000 0 s 0 1 s 10 0 s 6 25 Brake chopper 0 2 1 0 0 Brake chopper not in use 6 25 1 Brake chopper in use 2 External brake chopper 4 6 Start function 0 1 1 0 0 Ramp 6 25 1 Flying start 4 7 Stop function 0 1 1 0 0 Coasting 6 25 1 Ramp Note Parameter value can be changed only when the drive is stopped Page 6 11 Pump and fan control Application Code Parameter Range Step Default Custom Description Page 4 8 DC braking current 0 15 1 5x 0 1A 0 5 x 6 25 Incx A Incx 4 9 DC braking time at Stop 0 00 250 00 0 01 s 0 00s 0 DC b
104. seeesciccteeieedareebetanernd 3 2 32 GOntrOl Qasa 3 2 3 3 Control signal lOgic eee 3 3 3 4 Parameters Group 1 eeee 3 4 3 4 1 Parameter table 0 3 4 3 5 3 4 2 Description of Group1 par 3 5 Special parameters Groups 2 8 3 8 3 5 1 Parameter tables 0 3 8 3 5 2 Description of Groups 3 14 Page 3 1 Multi step Speed Control Application 3 1 GENERAL The Multi step Speed Control Applicationcan programmed from fault reset to jog speed be used in applications where fixed speeds select are needed in total 9 different speeds can be programmed one basic speed 7 multi step speeds and one jog speed The speed steps are selected with digital signals DIB4 DIB5 and DIB If jog speed is used DIA3 can be The basic speed reference can be either a voltage or a current signal via analog input terminals 2 3 or 4 5 The other analog input can be programmed for other purposes All outputs are freely programmable 3 2 CONTROL I O Reference potentiometer Terminal Signal Description 10V ef Reference output Voltage for a potentiometer etc Vint Input for reference voltage Basic reference programmable range 0 10 V DC Sen GND I O ground Ground for reference and controls g Basic reference lin Input for reference current Basic reference programmable optional
105. selected 11 At speed 12 Motor regulator activated 13 Output freq limit superv 1 14 Output freq limit superv 2 15 Torque limit supervision 16 Reference limit supervision 17 External brake control 18 Control from I O terminals 19 Drive temperature limit supervision 20 Unrequested rotation direction 21 External brake control inverted Relay output 1 function As parameter 3 6 Relay output 2 function As parameter 3 6 Output freq limit 1 supervision function 0 No 1 Low limit 2 High limit Output freq limit 1 supervision value Note Parameter value can be changed only when the drive is stopped Page 4 10 Pl control Application Code Parameter Range Step Default Custom Description Page 3 11 Output freq limit 2 0 2 1 0 0 No 4 22 supervision function 1 Low limit 2 High limit 3 12 Output freq limit 2 0 0 fmax 0 1 Hz 0 0 Hz 4 22 supervision value par 1 2 3 13 Torque limit 0 2 1 0 0 No 4 23 supervision function 1 Low limit 2 High limit 3 14 Torque limit 0 0 200 0 0 1 100 0 4 23 supervision value XTrsvg 3 15 Active reference limit 0 2 1 0 0 No 4 23 supervision function 1 Low limit 2 High limit 3 16 Active reference limit 0 0 fmax 0 1 Hz 0 0 Hz 4 23 supervision value par 1 2
106. setting minim 0 00 100 00 0 00 lin custom setting maxim 0 00 100 00 100 00 lin signal inversion 0 1 0 0 Not inverted 1 Inverted lin Signal filter time 0 01 10 00s 0 No filtering DIB5 function terminal 15 0 9 0 Not used 1 Ext fault closing contact 2 External fault opening contaci 3 Run enable 4 Acc dec time selection 5 Reverse 6 Jog speed 7 Fault reset 8 Acc dec operation prohibit 9 DC braking command Note Parameter value can be changed only when the drive is stopped Page 6 8 Parameter Pump and fan control Application Range Default Custom Description Motor digital potentiometer ramp time 0 1 2000 0 Hz s 10 0 Hz s Pl controller reference signal source A o 4 0 0 Analog voltage input term 2 1 Analog current input term 4 2 Set reference from the panel reference r2 3 Signal from internal motor pot 4 Signal from internal motor pot reset if CX CXLCXS unit is stopped Pl controller actual value selection 0 Actual value1 1 Actual 1 Actual 2 2 Actual 1 Actual 2 3 Actual 1 Actual 2 Actual value 1 input 0 No 1 Voltage input 2 Current input Actual value 2 input 0 No 1 Voltage input 2 Current input Actual value 1 min scale 320 00 320 00 0 00 0 no minimu
107. settings of the parameters 3 6 3 8 3 20 Drive temperature supervision limit value The set temperature value to be supervised with the parameter 3 19 Page 2 25 Bs N gt e A Q 4 5 4 6 Local Remote Control Application Acc Dec ramp 1 shape Acc Dec ramp 2 shape The acceleration and deceleration ramp shape can be programmed with these parameters Setting the value 0 gives you a linear ramp shape The output frequency immediately follows the input with a ramp time set by parameters 1 3 1 4 4 3 4 4 for Acc Dec time 2 Setting 0 1 10 seconds for 4 1 4 2 causes an S shaped ramp The speed changes are smooth Parameter 1 3 1 4 4 3 4 4 determines the ramp time of the acceleration deceleration in the middle of the curve See figure 2 5 22 A f Hz Figure 2 5 22 S shaped acceleration delse t deceleration gt UDO09K20 Acceleration time 2 Deceleration time 2 These values correspond to the time required for the output frequency to accelerate from the set minimum frequency par 1 1 to the set maximum frequency par 1 2 With this parameter it is possible to set two different acceleration deceleration times for one application The active set can be selected with the programmable signal DIA3 See parameter 2 2 Acceleration deceleration times can be reduced with a free analog input signal See parameters 2 18 and 2 19 Brake chopper 0 No
108. signal is lt 4mA Always if a warning exists The reverse command has been selected Jog speed has been selected with digital input The output frequency has reached the set reference Overvoltage or overcurrent regulator was activated The output frequency goes outside of the set supervision Low limit High limit par 3 9 and 3 10 The output frequency goes outside of the set supervision Low limit High limit par 3 11 and 3 12 The motor torque goes outside of the set supervision Low limit High limit par 3 13 and 3 14 Active reference goes outside of the set supervision Low limit High limit par 3 15 and 3 16 External brake ON OFF control with programmable delay par 3 17 and 3 18 External control mode selected with prog pushbutton 2 Temperature on drive is outside the set supervision limits par 3 19 and 3 20 Rotation direction of the motor shaft is different from the requested one External brake ON OFF control par 3 17 and 3 18 output active when brake control is OFF Table 2 5 2 Output signals via DO1 and output relays RO1 and RO2 Page 2 23 ww h 3 13 3 14 Local Remote Control Application Output frequency limit 1 supervision function Output frequency limit 2 supervision function 0 No supervision 1 Low limit supervision 2 High limit supervision If the output frequency goes under over the set limit 3 10 3 12 this function generates a warning messag
109. speed selected with the DIA digital input which if it is programmed for Jog speed See parameter 2 2 Parameter value is automatically limited between minimum and maximum frequency par 1 1 1 2 1 7 Current limit This parameter determines the maximum motor current that the CX CXL CXS will provide short term Current limit can be set lower with a free analog input signal see parameters 2 18 and 2 19 Page 3 5 Multi step Speed Control Application 1 8 V Hz ratio selection Linear The voltage of the motor changes linearly with the frequency in the constant flux area from 0 Hz to the field weakening point 0 par 6 3 where a constant voltage nominal vaue is supplied to the motor See figure 3 4 1 A linear V Hz ratio should be used in constant torque applications This default setting should be used if there is no special requirement for another setting Squared The voltage of the motor changes following a squared curve form with the frequency in the area from 0 Hz to the field weakening 1 point par 6 3 where the nominal voltage is supplied to the motor See figure 3 4 1 The motor runs undermagnetized below the field weakening point and produces less torque and electromechanical noise A squared V Hz ratio can be used in applications where the torque demand of the load is proportional to the square of the speed e g in centrifugal fans and pumps Field weakening point Default Nominal vo
110. stopped in the shortest possible time without using an optional external braking resistor The braking time is scaled according to the frequency when the DC braking starts If the frequency is gt nominal frequency of the motor par 1 11 the value of parameter 4 9 determines the braking time When the frequency is lt 10 of the nominal the braking time is 10 of the set value of parameter 4 9 A A fout Hz fout Hz XK Output frequency N aaa S Motor speed kS Output frequency bs DC braking ON DN 0 1x f Motor speed N DC braking ON X t a t 1xpar 4 9 gt t 0 1 x par 4 9 RUN RUN UD009K21 STOP STOP Figure 6 5 13 DC braking time when par 4 7 0 Stop function 1 ramp After the Stop command the speed of the motor is reduced baed on the deceleration ramp parameter if no regeneration occurs due to load inertia to a speed defined with by parameter 4 10 where the DC braking starts The braking time is defined with parameter 4 9 If high inertia exists it is recommended to use an external braking resistor for faster deceleration See figure 6 5 14 fout Hz 4 10 Execute frequency of DC M Motor speed brake during ramp Stop Output frequency See figure 6 5 14 DC braking Param 4 10 RE a to t param 4 9 RUN STOP UD009K23 Figure 6 5 14 DC braking time when par 4
111. t gt Three faults Four faults RUN STOP a 5 enaa na Re we en oe a UD012K25 Figure 4 5 26 Automatic restart Parameter 8 1 determines how many automatic restarts can be made during the trial time set by the parameter 8 2 The time counting starts from the first autorestart If the number of restarts does not exceed the value of the parameter 8 1 during the trial time the counting is cleared after the trial time has elapsed The next fault starts the counting again Automatic restart start function The parameter defines the start mode 0 Start with ramp 1 Flying start see parameter 4 6 Automatic restart after undervoltage trip 0 No automatic restart after undervoltage trip 1 Automatic restart after undervoltage fault condition returns to the normal condition DC link voltage returns to the normal level Automatic restart after overvoltage trip 0 No automatic restart after overvoltage trip 1 Automatic restart after overvoltage fault condition returns to the normal condition DC link voltage returns to the normal level Automatic restart after overcurrent trip 0 No automatic restart after overcurrent trip 1 Automatic restart after overcurrent faults Automatic restart after reference fault trip 0 No automatic restart after reference fault trip 1 Automatic restart after analog current reference signal 4 20 mA returns to the normal level gt 4 mA Automatic restart after over u
112. temperature limit supervision function 0 2 0 No 1 Low limit 2 High limit Drive temperature limit value 10 75 C Note Parameter value can be changed only when the drive is stopped Page 5 11 Multi purpose Control Application Code Parameter Range Step Default Custom Description Page 3 21 I O expander board opt 0 7 1 3 See parameter 3 1 5 23 analog output content 3 22 I O expander board opt 0 00 10 00 s 0 01 1 00s See parameter 3 2 5 23 analog output filter time 3 23 I O expander board opt 0 1 1 0 See parameter 3 3 5 23 analog output inversion 3 24 1 O expander board opt 0 1 1 0 See parameter 3 4 5 23 analog output minimum 3 25 1 O expander board opt 10 1000 1 100 See parameter 3 5 5 23 analog output scale Group 4 Drive control parameters Code Parameter Range Step Default Custom Description Page 4 1 Acc Dec ramp 1 shape 0 0 10 0s 0 1s 0 0s 0 Linear 5 26 gt 0 S curve acc dec time 4 2 Acc Dec ramp 2 shape 0 0 10 0s 0 1s 0 0s 0 Linear 5 26 gt 0 S curve acc dec time Acceleration time 2 0 1 3000 0 s 0 1s 10 0s 5 27 Deceleration time 2 0 1 3000 0 s 0 1s 10 0s 5 27 5 Brake chopper o 2 1 0 0 Brake chopper notin use 5 27 1 Brake chop
113. that it takes the calculated thermal stage to reach 63 of its final value The motor thermal time is specific to a motor design and it varies between different motor manufacturers The default value for the time constant is calculated based on the motor nameplate data from parameters 1 12 and 1 13 If either of these parameters is reset then this parameter is set to default value If the motor s tg time is known given by the motor manufacturer the time constant parameter could be set based on tg time As a rule of thumb the motor thermal time constant in minutes equals to 2xt tg in seconds is the time a motor can safely operate at six times the rated current If the drive is stopped the time constant is internally increased to three times the set parameter value Cooling in the stop stage is based on convection with an increased time constant Motor thermal protection break point frequency The frequency can be set between 10 500 Hz This is the frequency break point of the thermal current curve With frequencies above this point the thermal capacity of the motor is assumed to be constant Refer to the figure 3 5 28 The default value is based on the motor s nameplate data parameter 1 11 It is 35 Hz for a 50 Hz motor and 42 Hz for a 60 Hz motor More generally it is 70 of the frequency at the field weakening point parameter 6 3 Changing either parameter 1 11 or 6 3 will restore this parameter to its default value St
114. the MWh trip No resetting Reset of the counter counter when pushed MWh trip reset counter Table 7 2 Programmable push button descriptions Page 62 84 Control panel 7 7 Active faults menu The active faults menu can be entered from the main menu when the symbol M5 is visible on the first line of the Alpha numeric display as shown in Figure 7 10 When a fault brings the frequency con verter to a stop the fault code F and the description of the fault are displayed If there are several faults at the same time the list of active faults can be browsed with the browser buttons M5 Active Faults F 1 9 F1 1 Overcurrent Figure 7 10 Active faults menu a Scroll the active The display can be cleared with the Reset button and the read out will return to the same display it had before the fault trip The fault remains active until it is cleared with Reset button or with a reset signal from the I O terminal Note Remove external Start signal before resetting the fault to prevent unintended restart of the drive CLEAR fault list WITH Fault Fault Possible cause Checking codes F1 Overcurrent The frequency converter has measured too high a Check loading Check motor size Check cables current gt 4 In in the motor output sudden heavy load increase short circuit in the motor cables unsuitable motor F2 Overvoltage The voltage of the internal DC link of the f
115. the Start forward signal DIA1 has priority 1 DIA1 closed contact start open contact stop DIA2 closed contact reverse open contact forward See figure 1 5 2 A FWD Output Stop function frequency par 4 7 coasting REV DIA1 DIA2 UD012K10 Figure 1 5 2 Start Stop reverse Page 1 12 Standard Application 2 DIA1 closed contact start open contact stop DIA2 closed contact start enabled open contact start disabled 3 3 wire connection pulse control DIA1 closed contact start pulse DIA2 closed contact stop pulse DIA3 can be programmed for reverse command See figure 1 5 3 A FWD Output Stop function If Start and Stop pulses are frequency par 4 7 simultaneous the Stop pulse coasting overrides the Start pulse i REV y z 1 i i i i i DIA1 Start gt min 50 ms UDOO9K11 DIA2 G a Stop Figure 1 5 3 Start pulse Stop pulse 2 2 DIA3 function 1 External fault closing contact Fault is shown and motor is stopped when the contact is closed 2 External fault opening contact Fault is shown and motor is stopped when the contact is open 3 Run enable contactopen Start of the motor disabled contact closed Start of the motor enabled 4 Acc Dec contactopen Acceleration Deceleration time 1 selected time select contact closed Acceleration Deceleration time 2 selected 5 Reverse
116. the airflow or due to dust or dirt 3 7 6 7 7 Motor thermal protection Operation 0 Not in use 1 Warning 2 Trip function Tripping and warning will give a display indication with the same message code If tripping is selected the drive will stop and activate the fault stage Deactivating the protectionby setting this parameter to 0 will reset the thermal stage of the motor to 0 Motor thermal protection break point current The current can be set between 50 0 150 0 x limotor This parameter sets the value for thermal current at frequencies above the break point on the thermal current curve Refer to the figure 6 5 18 The value is set as a percentage of the motor nameplate nominal current parameter 1 13 nominal current of the motor not the drive s nominal output current The motor s nominal current is the current which the motor can withstand in direct on line use without being overheated If parameter 1 13 is adjusted this parameter is automatically restored to its default value Setting this parameter or parameter 1 13 does not affect the maximum output current of the drive Parameter 1 7 alone determines the maximum output current of the drive Motor thermal protection zero frequency current The current can be set between 10 0 150 0 xX Inmotor This parameter sets the value for thermal current at zero frequency Refer to the figure 6 5 18 The default value is set assuming that t
117. the set limit 3 10 this function generates a warning message via the digital output DO1 and via a relay output RO1 or RO2 depending on the settings of the parameters 3 6 3 8 3 10 Output frequency limit supervision value The frequency value to be supervised by the parameter 3 9 See figure 1 5 11 A f Hz Par 3 9 2 Par 3 10 uDoo9gK19 t gt Example 24 ROT 21 RO1 21 i 22 RO1 22 HOU 22 RO1 23 RO1 23 RO1 23 RO1 Figure 1 5 11 Output frequency supervision Page 1 16 gt e N gt e A Q 4 5 4 6 Standard Application Acc Dec ramp 1 shape Acc Dec ramp 2 shape The acceleration and deceleration ramp shape can be programmed with these parameters Setting the value 0 gives you a linear ramp shape The output frequency immediately follows the input with a ramp time set by parameters 1 3 1 4 4 3 4 4 for Acc Dec time 2 Setting 0 1 10 seconds for 4 1 4 2 causes an S shaped ramp The speed changes are smooth Parameter 1 3 1 4 4 3 4 4 determines the ramp time of the acceleration deceleration in the middle of the curve See figure 1 5 12 AfIHz t gt UDO09K20 Figure 1 5 12 S shaped acceleration deceleration Acceleration time 2 Deceleration time 2 These values correspond to the time required for the output frequency to change from the set minimum fre
118. the stall time Refer to the figure 2 5 31 If the stall time counter value goes above this limit this protection will cause a trip refer to the parameter 7 10 Trip warning par 7 10 Maximum stall frequency UMCH7_12 This frequency can be set between 1 f param 1 2 In the stall state the ouput frequency Stall has to be smaller than this limit Refer to the figure 2 5 30 Figure 2 5 31 Counting the stall time Time p Page 2 34 Local Remote Control Application Parameters 7 14 7 17 Underload protection General The purpose of motor underload protection is to ensure there is load on the motor while the drive is running If the motor load is reduced there might be a problem in the process e g broken belt or dry pump Motor underload protection can be adjusted by setting the underload curve with parameters 7 15 and 7 16 The underload curve is a squared curve set between zero frequency and the field weakening point The protection is not active below 5Hz the underload counter value is stopped Refer to the figure 2 5 32 The torque values for setting the underload curve are set with percentage values which refer to the nominal torque of the motor The motor s nameplate data parameter 1 13 the motor s nominal current and the drive s nominal current lct are used to create the scaling ratio for the internal torque value If other than a standard motor is used with the drive the
119. torque boost can be used in applications where starting torque due to starting friction is high e g in conveyors In high torque low speed applications it is likely the motor will overheat If the motor has to run for a prolonged time under these conditions special attention must be paid to cooling the motor Use external cooling for the motor if the temperature tends to rise too high Page 6 6 10 11 12 13 14 15 16 Pump and fan control Application Nominal voltage of the motor Find this value V from the nameplate of the motor This parameter sets the voltage at the field weakening point parameter 6 4 to 100 x V Nominal frequency of the motor motor Find the nominal frequency f from the nameplate of the motor This parameter sets the frequency at the field weakening point parameter 6 3 to the same value Nominal speed of the motor Find this value n from the nameplate of the motor Nominal current of the motor Find the value from the nameplate of the motor The internal motor protection function uses this value as a reference value Supply voltage Set parameter value according to the nominal voltage of the supply Values are pre defined for CX CXL CXS V 3 2 CX CXL CXS V 3 4 CX CXL CXS V 3 5 and CX V 36 See table 6 4 1 Parameter conceal Defines which parameter groups are available 0 All parameter groups are visible 1 Only group 1 is visible Param
120. value Page 4 31 Pl control Application A Motor temperature any be 0 2 i Trip area i 105 i ANSA Motor j Ca soa a yeu sorat et I 17 j Time constant T Motor temperature I 17 x 1 e 7 Time gt Changed with motor size and adjusted with parameter 7 8 UMCH7_92 Figure 4 5 21 Calculating motor temperature Parameters 7 10 7 13 Stall protection General Motor stall protection protects the motor from short time overload situations like a stalled shaft The reaction time of stall protection can be set shorter than with motor thermal protection The stall state is defined with two parameters 7 11 Stall Current and 7 13 Stall Frequency If the current is higher than the set limit and output frequency is lower than the set limit the stall state is true There is no true detection of shaft rotation Stall protection is a type of overcurrent protection Stall protection Operation 0 Not in use 1 Warning 2 Trip function Tripping and warning will give a display indication with the same message code If tripping is set on the drive will stop and activate the fault stage Setting the parameter to 0 will deactivate the protection and will reset the stall time counter to zero Stall current limit A The current can be set between 0 0 200 x Inmotor In the stall stage the current has to be above this limit Refer to the figure 4 5 22
121. value can be changed only when the drive is stopped Page 4 8 Parameter Pl control Application Range Default Custom Description Motor digital potentiometer ramp time 0 1 2000 0 Hz s 10 0 Hz s Pl controller reference signal source A o 4 0 0 Analog voltage input term 2 1 Analog current input term 4 2 Set reference from the panel reference r2 3 Signal from internal motor pot 4 Signal from internal motor pot reset if CX CXL CXS is stopped Pl controller actual value selection 0 Actual value 1 1 Actual 1 Actual 2 2 Actual 1 Actual 2 3 Actual 1 Actual 2 Actual value 1 input 0 No 1 Voltage input 2 Current input Actual value 2 input 0 No 1 Voltage input 2 Current input Actual value 1 min scale 320 00 320 00 0 00 0 No minimum scaling Actual value 1 max scale 320 00 320 00 100 0 100 No maximum scaling Actual value 2 min scale 320 00 320 00 0 00 0 No minimum scaling Actual value 2 max scale 320 00 320 00 100 0 100 No maximum scaling Error value inversion 0 1 0 No 1 Yes Pl controller min limit fmin tmax 1 1 1 2 Pl controller max limit fmin tmax 1 1 1 2 Direct frequency reference source B 0 4 0 Analog voltage input term 2 1 Analog current
122. 0 lin Custom setting maxim 0 00 100 00 0 01 100 00 lin Signal inversion 0 1 1 0 0 Not inverted 1 Inverted lin Signal filter time 0 01 10 00s 0 No filtering Reference scaling minimum value o par 2 14 Selects the frequency that corres ponds to the min reference signal Reference scaling maximum value Selects the frequency that corres ponds to the max reference signal 0 Scaling off gt 0 Scaled maximum value Free analog input signal selection 0 Not use 1 Vin analog voltage input 2 lin analog current input Free analog input function 0 No function 1 Reduces current limit par 1 7 2 Reduces DC braking current 3 Reduces acc and decel times 4 Reduces torque supervision limit Note Parameter value can be changed only when the drive is stopped Page 3 9 Multi step Speed Control Application Group 3 Output and supervision parameters Parameter Default Custom Description Analog output function 0 Not used Scale 100 1 O P frequency O fmax 2 Motor speed 0O max speed 3 O P current 0 2 0 x Incx 4 Motor torque 0 2 x Tymot 5 Motor power 0 2 x Prot 6 Motor voltage O 100 xV mot 7 DC link volt 0 1000 V Analog output filter time 0 00 10 00 s Analog output inversion 0 1 0 Not inverted 1
123. 0 Parameter Multi purpose Control Application Default Description Digital output function 1 0 Not used 1 Ready 2 Run 3 Fault 4 Fault inverted 5 CX overheat warning 6 External fault or warning 7 Reference fault or warning 8 Warning 9 Reversed 10 Jog speed selected 11 At speed 12 Motor regulator activated 13 Output freq limit superv 1 14 Output freq limit superv 2 15 Torque limit supervision 16 Reference limit supervision 17 External brake control 18 Control from I O terminals 19 Drive temperature limit supervision 20 Unrequested rotation direction 21 External brake control inverted Relay output 1 function As parameter 3 6 Relay output 2 function As parameter 3 6 Output freq limit 1 supervision function 0 No 1 Low limit 2 High limit Output freq limit 1 supervision value Output freq limit 2 supervision function 0 No 1 Low limit 2 High limit Output freq limit 2 supervision value Torque limit supervision function 0 No 1 Low limit 2 High limit Torque limit supervision value 200 0 200 0 xTncx Reference limit supervision function 0 2 0 No 1 Low limit 2 High limit Reference limit supervision value 0 0 fmax par 1 2 Extern brake Off delay 0 0 100 0 s Extern brake On delay 0 0 100 0 s Drive
124. 0 Hp are given in a separate manual If further information is needed contact your Honeywell distributor Frame Enclosure Voltage 1 230 380 480 EBACE 230 380 480 PAR 8 1 0 28 0 14 230 380 480 55 85 0 35 0 18 jes ozs tots Ps 94 035 018 arma 0 18 13 0 35 018 is 13 9 0 45 0 24 15 4 0 45 0 24 ONTACT FACTORY 123 a4 0 18 18 5 0 18 TAEA 0 18 Chassis 0 18 Protected Bao erase E TA aco ese Tate CX ocala stators tas te 139 oas t024 380 480 600 22 6 126 pati 402 324 jsa 15 4 0 45 10 24 380 480 600 38 9 0 24 380 480 600 SONTAG FACTORY 380 480 600 Table 5 3 1 Dimensions for open chassis units Figure 5 3 1 Mounting dimensions w NX _ N h alold P z RK Ww oO o N w P N N _ N z a W 230 380 480 230 380 480 230 380 480 NEMA 1 12 230 380 480 CXL 230 380 480 380 480 380 480 w N J N D N N N N D NO D co N On D l l la njo LIANAN folo jN o N N D N J a oje N oo w A juje o MD o n lajo O1 JO1 jo N f DIO O JVJO jor jo A je Q 230 380 480 230 380 480 230 380 480 DIN DIN O JNJN wo o Joo N _h N Page 28 84 Installation Figure 5 3 2 Lifting of 25 125 Hp units
125. 0 50 30 45 40 60 60 75 600 40 75 230 55 90 380 100 150 480 Figure 6 1 4 1 Stripping motor and utility 110160 380 cables 150 200 480 100 150 600 200 250 380 250 300 480 200 600 315 400 380 400 500 480 CONTACT FACTORY 250 300 500 600 400 1000 700 1100 500 800 NEMA 1 12 maximum 3 parallel connected cables can be used Table 6 1 4 2 Stripping lengths of the cables in Compact NEMA 1 Contact factory Loosen screws 2 pcs Pull cover bottom outwards Push cover upwards IP54KANS Figure 6 1 4 2 Opening the cover of the CX CXL Page 39 84 Wiring Power card Control card Control I O terminals Connect the shield to the terminal Fix the control cable with a tie wrap DC link Brak link Brake resistor Utility cable terminals L1 L2 L3 Ground terminals Motor cable terminals U V W terminals PE Fixing screw Nee K Fixing screw i i M Cable cover Motor cable L Brake resistor cable Control cable Utility cable Figure 6 1 4 3 Cable assembly for open chassis CX 0030 0200HP V 3 4 5 and CX 0020 0100HP V 3 2 Page 40 84 Wiri
126. 0 Default value is set according 6 31 time constant minutes min min to motor nominal current 7 9 Motor thermal protection 10 500 Hz 1Hz 35 Hz 6 32 break point frequency 7 10 Stall protection 0 2 1 1 0 No action 6 32 1 Warning 2 Fault 7 11 Stall current limit 5 0 200 0 1 0 130 0 6 33 X InMOTOR 7 12 Stall time 2 0 120 0s 1 0s 15 0s 6 33 7 13 Maximum stall frequency 1 fmax 1Hz 25 Hz 6 33 7 14 Underload protection 0 2 1 0 0 No action 6 34 1 Warning 2 Fault 7 15 Underload prot field 10 0 150 0 1 0 50 0 6 34 weakening area load X TaMoTOR 7 16 Underload protection 5 0 150 0 1 0 10 0 6 34 zero frequency load X TaMoTOR 7 17 Underload time 2 0 600 0s 1 0s 20 0s 6 34 Page 6 13 Pump and fan control Application Group 8 Autorestart parameters Code Parameter Range Step Default Custom Description Page 8 1 Automatic restart 0 10 1 0 0 Not in use 6 35 number of tries 8 2 Automatic restart multi 1 6000s 1s 30s 6 35 attempt maximum trial time 8 3 Automatic restart 0 1 1 0 0 Ramp 6 36 start function 1 Flying start 8 4 Automatic restart after 0 1 1 0 0 No 6 36 undervoltage trip 1 Yes 8 5 Automatic restart after 0 1 1 0 0 No 6 36 overvoltage trip 1 Yes 8 6 Automatic restart after 0 1 1 0 0 No 6 36 overcurrent trip 1 Yes 8 7 Automatic restart after 0 1
127. 1 2 120 Hz when the drive is stopped RUN indicator not lit parameters 1 1 and 1 2 are changed to 500 Hz At the same time the resolution of the panel reference is changed from 0 01 Hz to 0 1 Hz Changing the max value from 500 Hz to 120 Hz is done by setting parameter 1 2 119 Hz when the drive is stopped Acceleration time 1 deceleration time 1 These limits correspond to the time required for the output frequency to accelerate from the set minimum frequency par 1 1 to the set maximum frequency par 1 2 Pl controller gain This parameter defines the gain of the Pl controller If this parameter is set to 100 a 10 change in error value causes the controller output to change by 1 0 Hz If the parameter value is set to 0 the Pl controller operates as I controller Pl controller I time Defines the integration time of the Pl controller Current limit This parameter determines the maximum motor current what the CX CXL CXS will supply short term V Hz ratio selection Linear The voltage of the motor changes linearly with the frequency in the constant flux area from 0 Hz to the field weakening point 0 par 6 3 where a constant voltage nominal value is supplied to the motor See figure 6 4 1 Linear V Hz ratio should be used in constant torque applications This default setting should be used if there is no special requirement for another setting Squared The voltage of the motor changes following a square
128. 10 14 Output frequency supervision 2 The output frequency goes outside of the set supervision Low limit High limit par 3 11 and 3 12 15 Torque limit supervision The motor torque goes outside of the set supervision Low limit High limit par 3 13 and 3 14 16 Active reference Active reference goes outside of the set supervision limit supervision Low limit High limit par 3 15 and 3 16 17 External brake control External brake ON OFF control with programmable delay par 3 17 and 3 18 18 Control from I O terminals External control mode selected with progr push button 2 19 Drive Temperature on drive goes outside the set temperature limit supervision supervision limits par 3 19 and 3 20 20 Unrequested rotation direction Rotation direction of the motor shaft is different from the requested one 21 External brake control inverted External brake ON OFF control par 3 18 and 3 18 output active when brake control is OFF Table 4 5 2 Output signals via DO1 and output relays RO1 and RO2 Output frequency limit 1 supervision function Output frequency limit 2 supervision function 0 No supervision 1 Low limit supervision 2 High limit supervision If the output frequency goes under over the set limit 3 10 3 12 this function generates a warning message via the digital output DO1 or via a relay output RO1 or RO2 depending on the settings of the parameters 3 6 3 8 Output frequency limit 1
129. 15 point par 6 3 Figure 4 5 24 Setting of minimum load Underload protection zero frequency load Torque limit can be set between 10 0 150 xX Trmotor This parameter is the value for the minimum allowed torque with zero frequency Refer to the figure 4 5 24 If parameter 1 13 is adjusted this parameter is automatically restored to its default value Underload time This time can be set between 2 0 600 0 s This is the maximum allowed time for an underload state There is an internal up down counter to A Underload time counter Trip area Par 7 177 N accumulate the underload time Refer to the figure 4 5 25 If the underload counter value I Trip warning Par 7 14 l goes above this limit the protection will cause a trip refer to the parameter 7 14 If the drive is stopped the underload counter is reset to zero UMCH7_17 Time b gt Underl No underl Figure 4 5 25 Counting the under load time Automatic restart number of tries Automatic restart trial time o p N The Automatic restart function restarts the drive after the faults selected with parameters 8 4 8 8 The Start function for Automatic restart is selected with parameter 8 3 See figure 4 5 26 Page 4 34 Pl control Application A Number of faults during t trial oo a acl 4 al Par 8 1 3 1 i ttriaj Par 8 2
130. 18 2 8 DN Local Remote Control Application Analog input I signal range 0 0 20 mA output 1 4 20 mA frequency 2 Custom signal span See figure 2 5 8 Rene eccrine eae ee par 2 8 2 lin custom i 2 8 0 Analog input l custom EnS setting minimum maximum With these parameters you can scale the input current to parea correspond to a minimum and maximum frequency range See e par2 10 UMA figure 2 5 8 Minimum setting Set the lp signal to its minimum level select parameter 2 9 press the Enter button Maximum setting i Set the l signal to its maximun frequency level select parameter 2 10 press the Enter button par 2 15 par 2 8 1 e a lin 4 20 mA la term 3 4 ON Figure 2 5 8 Analog input I scaling Fe ap 6 Nn Si NS pA Say yp Sy SD a par 2 8 2 lin custom Note The parameter values can only be set with this procedure not with arrow up arrow down buttons par 2 8 1 lin 4 20 mA par 2 8 0 lin O 20 mA i i par 2 VA py TEE E T Se I R l in term 3 4 gt Analog input lin inversion Boleo 5 3 gt 20 mA UD009K29 l is source A frequency reference par 2 9 par 2 10 par 1 5 0 default Parameter 2 11 0 no inversion f of input Figure 2 5 9 I signal inversion Parameter 2 11 1 inversion of input See figur
131. 1Hp to 1100 Hp Subject to changes without notice Contents EXCEL VRL CX CXL CXS USERS MANUAL CONTENTS T Safety cinderella 2 1 1 Warnings oeenn 2 1 2 Safety instructions ee 2 1 3 Grounding and ground fault protection3 1 4 Running the motor ee 3 2 Directives ia rannin andanan ineeie 4 2 1 GEADE I aioe ices a tends ceeded 4 2 2 EMC directive a c 4 2 2 1 General ceeeeeeeeeseecceeeeeeeeeees 4 2 2 2 Technical criteria c 4 2 2 3 EMC levels aaaeeeaa 4 2 2 4 Manufacturer s Declaration of Conformity poccnrcecarteesn gia uSomuna a 4 OSU aD els eich Bee E ee ee ee 4 3 ROCGIVINIG wi wcisicecsiscessedvaretecsssietneeteciarens 11 3 1 Type designation code 11 32 OON Ao GP SS aaa Reed Gatcace 12 3 3 Warranty occse 12 4 Technical data ccc ccssessssessesseseeees 13 4 1 General ccecccececceeeceseeeeeeeeeneeees 13 4 2 Power ratings teccezscceeacs ee ceupetosieces 14 4 3 Specifications eeeeee 22 5 Installation 0 ceceseseceeeceeeeceeeceseeeseeeees 24 5 1 Ambient conditions 24 5 2 COGMAG ss espa 24 5 3 Mounting seee 28 6 WiNA aaa e aaeeea aaaea eenaa 30 6 1 Power connections acceca 33 6 1 1 Utility cable 0 ee 33 6 1 2 Motor cable uu eee 33 6 1 3 Control cable 33 6 1 4 Installation instructions 36 6 1 4 1 Cable selection and installation for UL listing 38 6 1 5 Cable and motor insulation CHECKS aoii naerda 53 6 2
132. 2 CX CXL CXS V 3 4 CX CXL CXS V 35 and CX V 36 see table 1 4 1 Parameter conceal Defines which parameter groups are available 0 all groups are visible 1 only group 1 is visible Parameter value lock Permits access for changing the parameter values 0 parameter value changes enabled 1 parameter value changes disabled Basic frequency reference selection 0 Analog voltage reference from terminals 2 3 e g a potentiometer 1 Analog current reference from terminals 4 5 e g a transducer 2 Panel reference is the reference set from the Reference Page REF see chapter 7 5 Page 1 7 Standard Application 1 5 SPECIAL PARAMETERS GROUPS 2 8 1 5 1 Parameter tables Group 2 Input signal parameters Parameter Start Stop logic selection Default Custom Description DIA1 DIA2 Start reverse Reverse Run enable Stop pulse 0 Start forward 1 Start Stop 2 Start Stop 3 Start pulse DIA3 function terminal 10 0 Not used 1 Ext fault closing contact 2 External fault opening contact 3 Run enable 4 Acc dec time selection 5 Reverse if par 2 1 3 Reference offset for current input 0 0 20 mA 1 4 20 mA Reference scaling minimum value Selects the frequency that corresponds to the minimum reference signal Reference scaling maximum value Selects the frequency that corresponds to the maximum reference signa
133. 2 2 EMC directive 2 2 1 General The EMC directive Electro Magnetic Compatibility states that the electrical equipment must not disturb the environment and must be immune to other Electro Magnetic Disturbances in the environment A Technical Construction File TCF exists which demonstrates that the CX CXL CXS drives fulfill the requirements of the EMC directive A Technical Construction File has been used as a statement of conformity with the EMC directive as it is not possible to test all combinations of installation 2 2 2 Technical criteria The design intent was to develop a family of drives which is user friendly and cost effective while fulfilling the customer needs EMC compliance was a major consideration from the outset of the design The CX CXL CXS series is targeted at the world market To ensure maximum flexibility yet meet the EMC needs of different regions all drives meet the highest immunity levels while emission levels are left to the user s choice The code N CX CXL CXS inverters are designed for use outside the EU or for use within the EU where the end user take personal responsibility for EMC compliance 2 2 3 EMC levels The EXCEL VRL frequency converters do not fulfil any EMC emission requirements without an optional RFI filter either buit in or separate For EMC purposes the frequency converters are divided into three different levels All the products have the same functions and control elect
134. 3 17 External brake off delay 0 0 100 0 s 1 0 5s 4 23 3 18 External brake on delay 0 0 100 0s 1 1 5s 4 23 3 19 Drive 0 2 1 0 0 No 4 23 temperature limit 1 Low limit supervision 2 High limit 3 20 Drive 10 75 C 1 40 C 4 23 temperature limit 3 21 I O expander board opt 0 7 1 3 See parameter 3 1 4 21 analog output function 3 22 I O expander board opt J0 00 10 00 s 0 01s 1 00s See parameter 3 2 4 21 analog output filter time 3 23 I O expander board opt 0 1 1 0 See parameter 3 3 4 21 analog output inversion 3 24 I O expander board opt 0 1 1 0 See parameter 3 4 4 21 analog output minimum 3 25 I O expander board opt 10 1000 1 100 See parameter 3 5 4 21 analog output scale Group 4 Drive control parameters Code Parameter Range Step Default Custom Description Page 4 1 Acc Dec ramp 1 shape 0 0 10 0s 0 1s 0 0s 0 Linear 4 24 gt 0 S curve acc dec time 4 2 Acc Dec ramp 2 shape 0 0 10 0s 0 1s 00s 0 Linear 4 24 gt 0 S curve acc dec time 4 3 Acceleration time 2 0 1 3000 0 s 0 1s 10 0s 4 24 4 4 Deceleration time 2 0 1 3000 0 s 0 1s 10 0s 4 24 4 5 Brake chopper 0 2 1 0 0 Brake chopper not in use 4 25 1 Brake chopper in use 2 External brake chopper 4 6 Start function 0 1 1 0 0 Ramp 4 25 1 Flying start Note Parameter value can be changed only when the drive is stopped Page 4 11
135. 3 Torque limit 0 2 1 0 0 No 3 24 supervision function 1 Low limit 2 High limit 3 14 Torque limit 0 0 200 0 0 1 100 0 3 24 supervision value XTncx 3 15 Reference limit 0 2 1 0 0 No 3 24 supervision function 1 Low limit 2 High limit 3 16 Reference limit 0 0 fmax 10 1 Hz 0 0 Hz 3 24 supervision value par 1 2 3 17 Extern brake Off delay 0 0 100 0s 0 1s 0 5s 3 24 3 18 Extern brake On delay 0 0 100 0s 0 1s 1 5s 3 24 3 19 Drive 0 2 1 0 0 No 3 25 temperature limit 1 Low limit supervision 2 High limit 3 20 Drive 10 75 C 1 40 C 3 25 temperature limit value 3 21 1 O expander board opt 0 7 1 3 See parameter 3 1 3 22 analog output function 3 22 1 O expander board opt 0 00 10 00 s 0 01 s 1 00 s See parameter 3 2 3 22 analog output filter time 3 23 1 O expander board opt 0 1 1 0 See parameter 3 3 3 22 analog output inversion 3 24 1 O expander board opt 0 1 1 0 See parameter 3 4 3 22 analog output minimum 3 25 1 O expander board opt 10 1000 1 100 See parameter 3 5 3 22 analog output scale Group 4 Drive control parameters Code Parameter Range Step Default Custom Description Page 4 1 Acc Dec ramp 1 shape 0 0 10 0s 0 1 s 0 0 s 0 Linear 3 25 gt 0 S curve acc dec time 4 2 Acc Dec ramp 2 shape 0 0 10 0s 0 1s 0 0s 0 Linear 3 25 gt 0 S curve acc dec time 4 3 Acceleration time 2 0 1 3000 0s 0 1 s
136. 4 9 UD009K23 Page 5 28 Multi purpose Control Application Execute frequency of DC brake during ramp Stop See figure 5 5 19 DC brake time at start 0 DC brake is not used T gt 0 DC brake is active when f Hz the start command is given This parameter defines the time before the brake is released After the brake is released the output frequ ency increases according to the set start function parameter 4 6 and the acceleration parameters 1 gt 3 4 1 or 4 2 4 3 See Par 4 11 f i figure 5 5 20 aa Figure 5 5 20 DC braking STOP UD009K22 at start 4 12 4 18 Multi Step speeds 1 7 6 1 These parameter values define the Multi step speeds selected with the DIA4 DIB5 and DIB6 digital inputs The selection of Multi step speeds will occur similarly as described in the table 3 4 2 page 3 8 5 1 5 6 Prohibit frequency area Low limit High limit Hz In some systems it may be necessary to avoid certain frequencies because of mechanical resonance problems With these parameters it is possible to set limits for three skip frequency regions The accuracy of the setting is 0 1 Hz frequency reference SE Hz F T gt UDO09K33 Figure 5 5 21 Example of prohibit frequency area setting Motor control mode 0 Frequency control The I O terminal and panel references are frequency V Hz references and the drive controls the out
137. 4 4 Deceleration time 2 0 1 3000 0s 0 1s 10 0s 2 26 Brake chopper 0 2 1 0 0 Brake chopper notin use 2 26 1 Brake chopper in use 2 External brake chopper 4 6 Start function 0 1 1 0 0 Ramp 2 26 1 Flying start 4 7 Stop function 0 1 1 0 0 Coasting 2 27 1 Ramp 4 8 DC braking current 0 15 1 5 0 1 0 5 x 2 27 Incx A Incx 4 9 DC braking time at Stop 0 00 250 00 s 0 01 s 0 00 s 0 DC brake is off at Stop 2 27 4 10 Turn on frequency of DQ 0 1 10 0 Hz 0 1 Hz 1 5 Hz 2 28 brake during ramp Stop 4 11 DC brake time at Start 0 00 25 00 s 0 01s 0 00 s 0 DC brake is off at Start 2 28 4 12 Jog speed reference fmin fmax 0 1 Hz 10 0 Hz 2 29 Group 5 Prohibit frequency parameters Code Parameter Range Step Default Custom Description Page 5 1 Prohibit frequency fmin 0 1 Hz 0 0 Hz 2 29 range 1 low limit par 5 2 5 2 Prohibit frequency fmin fmax 0 1 Hz 0 0 Hz 0 Prohibit range 1 is off 2 29 range 1 high limit 1 1 1 2 5 3 Prohibit frequency fmin 0 1 Hz 0 0 Hz 2 29 range 2 low limit par 5 4 5 4 Prohibit frequency fmin fmax 0 1 Hz 0 0 Hz 0 Prohibit range 2 is off 2 29 range 2 high limit 1 1 1 2 5 5 Prohibit frequency fmin 0 1 Hz 0 0 Hz 2 29 range 3 low limit par 5 6 5 6 Prohibit frequency fmin fmax 0 1 Hz 0 0 Hz 0 Prohibit range 3 is off 2 29 range 3 high limit 1 1 1 2 Note Parameter value can be chang
138. 6 Ri min 5 kQ a N CMB Common for DIB4 DIB6 Must be connected to GND or 24V of I O terminal or to external 24V or GND lout Analog signal output lout Analog ground output Signal range 0 4 20 mA R max 500 Q DO1 Open collector output RO1 1 RO1 2 RO1 3 Relay output 1 Transistor output max Vi 48 VDC max current 50 mA RO2 1 RO2 2 RO2 3 Relay output 2 Figure 6 2 1 Control I O terminal signals Max switch voltage 250 VAC 300 VDC Max switch current 8A 24 VDC 0 4 A 250 VDC Max switch power lt 2 kVA 250 VAC Max cont current lt 2 A rms Ifthe potentiometer reference is used potentiometer R 1 10 kQ Page 54 84 Wiring Utility nae y Digital input group A Digital input group B M J Analog output Digital output Control I O ground Lil ke bs Main circuits et Figure 6 2 2 1 Isolation barriers 6 2 3 Digital input function inversion The active signal level of the digital input logic depends on how the common input CMA CMB of the input group is connected The connection can be either to 24 V or to ground See figure 6 2 3 1 Ground CMA Positive logic 24 V active signal input is active when the switch is closed Figure 6 2 3 1 Positive negative logic The 24V or ground for the digital inputs a
139. 6 Joystick control from the voltage input V Signal range Max reverse Direction change Max forward speed speed 0 10 V OV 5V 10 V Custom Par 2 7 x10V Inthe middle of Par 2 8x 10 V custom range 10 V 10 V 10 V oV 10 V Warning Use only 10V 10 V signal range If a custom or 0 10 V signal range is used the drive will run at the max reverse speed if the reference signal is lost ZN 7 Joystick control from the current input l n Signal range Max reverse Direction change Max forward speed speed 0 20 mA 0 mA 10 mA 20 mA Custom Par 2 13 x 20 mA In the middle of Par 2 14 x 20 mA custom range 4 20 mA 4 mA 12 mA 20 mA Warning Use only 4 20 mA signal range If a custom or 0 20 mA signal range is used the drive will run at the max reverse speed if the control signal is lost Set the reference fault par 7 2 active when the 4 20 mA range is used then the drive will stop with a reference fault if the reference signal is lost ZN Page 5 5 1 6 1 7 1 8 Multi purpose Control Application Note When joystick control is used the direction control is generated from the joystick reference signal See figure 5 4 1 Analog input scaling parameters 2 16 2 19 are not used when joystick control is used fout Hz Ayout Hz Fmax Fmax par 1 2 par 1 2 Fmin 10V par 1 1 ip aa
140. 68 EEC and EMC Directive 89 336 EEC It is ensured through internal measures and quality control that product conforms at all times to the requirements of the current Directive and the relevant standards Vaasa 12 05 1997 S E T Veijo Karppinen Managing Director The last two digits of the year the CE marking was affixed _97 Page 7 84 Directives EU DECLARATION OF CONFORMITY We Manufacturer s Name Vaasa Control Manufacturer s Address P O BOX 25 Runsorintie 5 FIN 65381 VAASA Finland hereby declares that the product Product name CXL Frequency converter Model number CXL C has been designed and manufactured in accordance with the following standards Safety EN 50178 1995 and relevant parts of EN60950 1992 Am 1 1993 Am 2 1993 Am 3 1995 EN60204 1 1996 EMC EN50081 1 2 1993 EN50082 1 2 1995 EN61800 3 1996 Technical construction file Prepared by Vaasa Control Oy Function Manufacturer Date 03 05 1996 TCF no RP00014 Competent body Name FIMKO LTD Address P O Box 30 S rkiniementie 3 FIN 00211 Helsinki Country Finland and conforms to the relevant safety provisions of the Low Voltage Directive 73 23 EEC as amended by the Directive 93 68 EEC and EMC Directive 89 336 EEC It is ensured through internal measures and quality control that product conforms at all times to the requirements of the current Directive and the relevant standards Vaasa 12 05 1997 L
141. 7 1 Page 6 26 Pump and fan control Application 4 11 DC brake time at start 0 DC brake is not used gt 0 DC brake is active when the start command is given This parameter defines the time before the brake A is released After the brake is re four HZ leased the output frequency in creases according to the set start function parameter 4 6 and accel eration parameters 1 3 4 1 or 4 2 4 3 see figure 6 5 15 Figure 6 5 15 DC braking time at start i I I gt 4 12 Jog speed reference Par 4 11 Parameter value defines the jog STOF aes speed selected with the digital input 5 1 5 6 Prohibit frequency area Low limit High limit In some systems it may be neces Baz sary to avoid certain frequencies because of mechanical resonance problems With these parameters it is possible to set limits for three skip frequency regions The accuracy Pa of the setting is 0 1 Hz 5 1 5 2 Figure 6 5 16 Example of prohibit 5 3 5 4 frequency area setting 5 5 5 6 Eo Hz T T gt UDO09K33 6 1 Motor control mode 0 Frequency control The I O terminal and panel references are frequency V Hz references and the drive controls the output frequency output freq resolution 0 01 Hz 1 Speed control The I O terminal and panel references are speed sensorless vector references and the drive controls the motor speed control accuracy
142. 8 240 230 V CX CXL CXS V32 380 440 380 V CX CXL CXS V34 380 500 480 V CX CXL CXS V35 525 690 600 V CXV36 Application package lock 0 1 1 0 package lock open Application is selected by parameter 0 1 Parameter value lock Disables parameter changes 0 changes enabled 1 changes disabled Basic frequency reference selection 0 analog input Vin 1 analog input lin 2 reference from the panel Analog input lin range Table 10 4 1 Group 1 basic parameters Note Parameter value can be changed only when the CX CXL CXS is stopped 0 0 20 mA 1 4 20 mA If 1 2 gt motor synchr speed check suitability of motor and drive system Default value for a four pole motor and a nominal size drive Page 75 84 Basic Application 10 4 1 Descriptions 1 1 1 2 Minimum maximum frequency Defines the frequency limits of the drive Default maximum value for parameters 1 1 and 1 2 is 120 Hz By setting 1 2 120 Hz in Stop state RUN indicator not lit and pressing the Enter key the maximum value of parameters 1 1 and 1 2 is changed to 500 Hz At the same time the panel reference display resolution is changed from 0 01 Hz to 0 1 Hz The max value is changed from 500 Hz to 120 Hz when parameter 1 2 is set to 119 Hz in Stop state and the Enter key is pressed 1 3 1 4 Acceleration time deceleration time These li
143. Acceleration Deceleration time 2 selected 5 Reverse contact open Forward Can be used for reversing if contact closed Reverse parameter 2 1 has value 3 6 Jog speed contact closed Jog speed selected for freq refer 7 Fault reset contact closed Resets all faults 8 Acc Dec operation prohibited contact closed Stops acceleration or deceleration until the contact is opened 9 DC braking command contact closed In Stop mode the DC braking operates until the contact is opened see figure 3 5 4 DC brake current is set with parameter 4 8 Page 3 16 Multi step Speed Control Application 2 3 2 4 2 5 Note A Output frequency Param 4 10 7 DIAS RUDS UD009K32 DIA3 as DC brake command input and stop mode Ramp A t 4 gt ows DIA3 as DC brake command input and stop mode Coasting Figure 3 5 4 DIA3 as DC brake command input a Stop mode Ramp b Stop mode Coasting V Signal range 0 Signal range 0 10 V 1 Custom setting range from custom minimum par 2 4 to custom maximum par 2 5 V custom setting minimum maximum These parameters set V for any input signal span within 0 10 V Minimum setting Set the V signal to its minimum level select parameter 2 4 press the Enter button Maximum setting Set the V signal to its maximum level select parameter 2 5 press the Enter button The parameter values can only be s
144. CX CXL CXS APPLICATION MANUAL A Ge ngtal scute tetas ttawtiige innan 0 2 B Application selection sseeeeeeee 0 2 C Restoring default values of application parameters ossei iartain 0 2 D Language selection ceeeee 0 2 1 Standard Control Application 1 1 2 Local Remote Control Application 2 1 3 Multi step Speed Application 3 1 4 Pl control Application 00 0 0 eee 4 1 5 Multi purpose Control Application 5 1 6 Pump and Fan Control Application 6 1 HOW TO USE THIS MANUAL This manual provides you with the information necessary to install start up and operate a CX CXL CXS drive We recommend that you read this manual carefully Quick Start Guide Check the equipment received compared to what you have ordered see chapter 3 Before doing any start up actions carefully read the safety instructions in chapter 1 Before mechanical installation check the minimum clearances around the unit and verify that ambient conditions will meet the requirements of chapter 5 2 and table 4 3 1a Check the size of the motor cable the utility cable and the fuses Verify the tightness of the cable connections Review chapters 6 1 1 6 1 2 and 6 1 2 Follow the installation instructions see chapter 6 1 4 Control cable sizes and grounding system are explained in chapter 6 2 The signal configuration for the Basic application is in
145. Chapter 11 of the CX CXL CXS User s Manual Other applications include more parameter groups Once in the last parameter of a parameter group you can move directly to the first parameter of that group by pressing the browser button O Figure 7 7 Parameter value change procedure Page 60 84 Control panel 7 5 Reference menu The reference menu can be entered from the main menu when the symbol M3 is visible on the first line of the Alpha numeric panel If the control panel is the active control source the frequency reference can be changed by changing the value on the display with the browser buttons for the selection of the active control source see Chapter 7 6 Programmable push button menu See Figure 7 8 M3 Reference R1 1 Figure 7 8 Reference setting on the control panel Press the menu button once and the symbol R1 starts to blink Now you are able to alter the frequency reference value with the browser buttons Pressing the Enter button is not necessary Motor speed changes as soon as the frequency reference changes or the load inertia allows the motor to accelerate or decelerate In some applications there might be several references In this case pressing the menu button once brings you to the menu where you can choose with the browser buttons the reference you wish to change Another push on the button takes you to the editing mode Freq reference 122 45 Hz P
146. D012K25 Figure 6 5 24 Automatic restart Page 6 35 8 3 8 4 8 5 8 6 8 7 8 8 Pump and fan control Application Automatic restart start function The parameter defines the start mode 0 Start with ramp 1 Flying start see parameter 4 6 Automatic restart after undervoltage trip 0 No automatic restart after undervoltage trip 1 Automatic restart after undervoltage fault condition returns to the normal condition DC link voltage returns to the normal level Automatic restart after overvoltage trip 0 No automatic restart after overvoltage trip 1 Automatic restart after overvoltage fault condition returns to the normal condition DC link voltage returns to the normal level Automatic restart after overcurrent trip 0 No automatic restart after overcurrent trip 1 Automatic restart after overcurrent faults Automatic restart after reference fault trip 0 No automatic restart after reference fault trip 1 Automatic restart after analog current reference signal 4 20 mA returns to the normal level gt 4 mA Automatic restart after over undertemperature fault trip 0 No automatic restart after temperature fault trip 1 Automatic restart after heatsink temperature has returned to its normal level between 10 C 75 C Page 6 36 0 ORAN 0 N OOQ 10 11 Pump and fan control Application Number of auxiliary drives With this parameter t
147. DIA1 Start Stop source A Start Stop DIA2 External fault Programmable contolline Signal line UD012K04 Figure 4 3 1 Control signal logic of the PI Control Application Switch positions shown are based on the factory settings Page 4 3 Pl control Application 4 4 Basic parameters Group 1 4 4 1 Parameter table Group 1 Parameter Range Default Description Minimum frequency O fmax 0 Hz Maximum frequency fmin 120 500 Hz 60 Hz Acceleration time 1 0 1 3000 0s 0 1 0s Time from fmin 1 1 to fmax 1 2 Deceleration time 1 0 1 3000 0s 0 1 0s Time from fmax 1 2 to fmin 1 1 Pl controller gain 1 1000 100 Pl controller time 0 00 320 00 s 10 00s 0 no Integral time in use Current limit 0 1 2 5 x Incx 1 5 x Incx Output current limit A of the unit V Hz ratio selection 0 2 0 0 Linear 1 Squared 2 Programmable V Hz ratio V Hz optimization 0 1 0 None 1 Automatic torque boost Nominal voltage 180 690 V 230 V CX CXL CXS V 3 2 of the motor 380 V CX CXL CXS V 3 4 480 V CX CXL CXS V 35 575 V CXV36 Nominal frequency 30 500 Hz 60 Hz fn from the nameplate of of the motor the motor Nominal speed 1 20000 rpm 1720 rpm Nn from the nameplate of of the motor i the motor Nominal current 2 5 X Incx Incx I from the nameplate of of the motor the motor Supply voltage 208 240 230 V CX CXL C
148. Dec contact open Acceleration Deceleration time 1 selected time select contact closed Acceleration Deceleration time 2 selected 5 Reverse contact open Forward Can be used for reversing if contact closed Reverse parameter 2 1 has value 3 6 Jog freq contact closed Jog frequency selected for freq refer 7 Fault reset contact closed Resets all faults 8 Acc Dec operation prohibited contact closed Stops acceleration and deceleration until the contact is opened 9 DC braking command contact closed In the stop mode the DC braking operates until the contact is opened see figure 2 5 4 Dc brake current is set with parameter 4 8 10 Motor pot meter down contact closed Reference decreases until the contact is opened Page 2 16 2 3 2 4 2 5 Note Local Remote Control Application A Output frequency Param 4 10 7 DIAS RHN UD009K32 DIA3 as DC brake command input and stop mode Ramp A t 4 gt a DIA3 as DC brake command input and stop mode Coasting Figure 2 5 4 DIA3 as DC brake command input a Stop mode Ramp b Stop mode Coasting V Signal range 0 Signal range 0 10 V 1 Custom setting range from custom minimum par 2 4 to custom maximum par 2 5 V custom setting minimum maximum With these parameters you can set V for any input signal span within 0 10 V Minimum setting Set the V signal to its minimum l
149. E ae mize rr a a a D fy 2s Connect the shield to the Utility cable terminal terminals Fix the control eta DC link brake cable with a tie resistor terminals ae Motor cable terminals Ground terminal mon Ground terminals Rubber grommets Motor cable Control cable Brake resistor cable ChelP2154 Utility cable Figure 6 1 4 8 Cable assembly for NEMA 1 CXL 0250 0600HP V 3 4 5 and CXL 0150 0300HP V 3 2 Page 45 84 Wiring _ Utility cable __ Ground terminal PE Utility cable terminals L1 L2 L3 OOOO Power card m eo Control card Control I O terminals ele Pe eee Connect the screen to the terminal Fix the control cable with a tie wrap DC link Brake resistor terminals Ground Motor cable terminals terminals PE Brake resistor cable Motor cable Control cable Figure 6 1 4 9 Cable assembly for open chassis CX 0750 1250HP V 3 4 5 and CX 0400 0600HP V 3 2 Page 46 84 Wiring Control I O terminals Gas oP PPP PPEPEE PPP PPPEE PPI Control cable grounding Control cable fixing PE terminal for utility and motor cables DC link brake resistor terminals Insulated yellow green grounding conductor twisted of cable shield Terminal isolator plates
150. Frequency resolution 0 01 Hz Control characte ristics Control method Frequency Control V Hz Open Loop Sensorless Vector Control Closed Loop Vector Control Switching frequency 1 16 kHz depending on horsepower rating Frequency Analog I P Resolution 12 bit accuracy 1 reference Panel refer Resolution 0 01 Hz Field weakening point 30 500 Hz Acceleration time 0 1 3000 s Deceleration time 0 1 3000 s Braking torque DC brake 30 T without brake option Environ mental limits Ambient operating temperature 10 no frost 50 C at Iz 1 5 x lor max 1min 10min 10 no frost 40 C at lyr 1 1 x lor max 1min 10 min Storage temperature 40 C 60 C Relative humidity lt 95 no condensation allowed Air quality chemical vapors mechanical particles IEC 721 3 3 unit in operation class 3C2 IEC 721 3 3 unit in operation class 3S2 Altitude Max 1000 m at continuous ler specification Over 1000 m reduce lor by 1 per each 100 m Absolute maximum altitude 3000 m Vibration IEC 721 3 3 Operation max displacement amplitude 3 mm at 2 9 Hz Max acceleration amplitude 0 5 G at 9 200 Hz Shock IEC 68 2 27 Operation max 8 G 11 ms Storage and shipping max 15 G 11 ms in the package Enclosure Table 4 3 1 Specifications Open and protected chassis IP00 and IP20 Compact NEMA
151. HP V 3 2 Page 42 84 Wiring Control card I O terminals a l m Internal Connect the y cooling fan shield to l 4 the terminal Utility cable terminals DC link brake resistor terminals Motor cable terminals Ground terminal Ground terminal Rubber grommets an eet cable Prao rosistor cable Control cable Utility cable Ch5IP54 Figure 6 1 4 6 Cable assembly for NEMA 12 CXL 0100 0200HP V 3 4 5 and CXL 0050 0100HP V 3 2 Page 43 84 Wiring Power card Control card Control I O terminals Connect the shield to the terminal Fix the control cable with a tie wrap Utility cable D O DC link Brake terminals A A z 5 resistor L1 L2 L3 P terminals l o o H o olo oo aE Ground l Motor cable terminals S terminals PE O O O _ Fixing il A C Fixing screw L r Cable cover Utility cable _ in D m Motor cable Control cable Brake resistor cable Figure 6 1 4 7 Cable assembly for open chassis CX 0250 0600HP V 3 4 5 and CX 0150 0300HP V 32 Page 44 84 Wiring INNA oii i iii Control card I O terminals z
152. Inverted Analog output minimum 0 1 0 0mA 1 4mA Analog output scale 10 1000 Digital output function 0 21 0 Not used 1 Ready 2 Run 3 Fault 4 Fault inverted 5 CX overheat warning 6 External fault or warning 7 Reference fault or warning 8 Warning 9 Reversed 10 Jog speed selected 11 At speed 12 Motor regulator activated 13 Output frequency limit superv 1 14 Output frequency limit superv 2 15 Torque limit supervision 16 Reference limit supervision 17 External brake control 18 Control from O terminals 19 Drive temperature limit supervision 20 Unrequested rotation direction 21 External brake control inverted Relay output 1 function As parameter 3 6 Relay output 2 function As parameter 3 6 Output freq limit 1 supervision function 0 No 1 Low limit 2 High limit Output freq limit 1 supervision value Note Parameter value can be changed only when the drive is stopped Page 3 10 Multi step Speed Control Application Code Parameter Range Step Default Custom Description Page 3 11 Output freq limit 2 0 2 1 0 0 No 3 23 supervision function 1 Low limit 2 High limit 3 12 Output freq limit 2 0 0 fmax 10 1 Hz 0 0 Hz 3 23 supervision value par 1 2 3 1
153. No response 1 Warning 2 Fault stop mode after fault according to parameter 4 7 3 Fault always coasting stop mode after fault A warning or a fault action and message is generated from the external fault signal in the digital input DIA3 The information can also be programmed into digital output DO1 and into relay outputs RO1 and RO2 Phase supervision of the motor 0 No action 2 Fault Phase supervision of the motor ensures that the motor phases have approximately equal current Ground fault protection 0 No action 2 Fault message Ground fault protection ensures that the sum of the motor phase currents is zero The overcurrent protection is always working and protects the drive from ground faults with high current levels Parameters 7 5 7 9 Motor thermal protection General Motor thermal protection is to protect the motor from overheating The CX CXL CXS drive is capable of supplying higher than nominal current to the motor If the load requires this high current there is a risk that motor will be thermally overloaded This is true especially at low frequencies With low frequencies the cooling effect of the motor fan is reduced and the capacity of the motor is reduced If the motor is equipped with an external fan the load reduction on low speed is small Motor thermal protection is based on a calculated model and it uses the output current of the drive to determine the load on the motor When the power is t
154. ON MANUAL CONTENTS A General sealanna avid aiden 0 2 B Application selection ccsccsee 0 2 C Restoring default values of application parameters 0008 0 2 D Language Selection c ccccceceeeees 0 2 1 Standard Control Application 1 1 2 Local Remote Control Application 2 1 3 Multi step Speed Application 3 1 4 Pl control Application 0008 4 1 5 Multi purpose Application 5 1 6 Pump and fan control Application 6 1 Page 0 1 General A General This manual provides you with the information needed to apply these applications B Application selection If the Basic Application is in use first open the application package lock parameter 1 15 0 Group 0 appears By changing the value of parameter 0 1 a different application can be selected See table B 1 Each application is described in its own chapter Section B tells how to select the application To change from one application to another simply change the value of parameter 0 1 to that of the application desired see table B 1 Number Parameter Range Description 0 1 Application 1 Basic Application 2 Standard Application 3 Local Remote Control Application 4 Multi step Speed Application 5 Pl control Application 6 Multi purpose Control Application 7 Pump and Fan Control Application Table B 1 Application selection parameters Besides the par
155. On resetting this fault the drive will F23 checksum interference automatically load the parameter failure component failure default settings Check all parameters before restarting the drive If the fault occurs again contact your Honeywell affiliate F25 Microprocessor interference Reset the fault and restart If the watchdog component failure fault occurs again contact your Honeywell distributor F26 Panel The connection between the Check the panel cable and communication drive and the panel doesn t work connectors If the fault occurs error again contact your Honeywell affiliate F29 Thermistor The thermistor input on the I O Check the motor load and cooling protection boards has detected a motor Check the thermistor connection If temperature increase there are no thermistors make sure the inputs are short circuited F36 Analog input The analog input current is Check the current loop circuitry Im lt 4 mA below 4 mA signal range 4 signal source failed 20 mA selected control cable broken F41 External fault An external fault has been Check the external fault source detected at the digital input Table 9 1 Fault codes Page 72 84 Basic Application 10 BASIC APPLICATION 10 1 General The Basic Application is the default setting as delivered from the factory Control I O signals of the Basic application are fixed not programmable and it only has parameter Group 1 10 2 Control Connections R
156. Range Step Default Custom Description Page 5 1 Prohibit frequency fmin fmax 0 1 Hz 0 0 Hz 1 19 range low limit par 5 2 5 2 Prohibit frequency fmin fmax 0 1 Hz 0 0 Hz 0 no prohibit frequency range 1 19 range high limit 1 1 1 2 max limit par 1 2 Group 6 Motor control parameters Code Parameter Range Step Default Custom Description Page 6 1 Motor control mode o 1 1 0 0 Frequency control 1 20 1 Speed control 6 2 Switching frequency 1 0 16 0 kHz 0 1 10 3 6 kKHa Dependant on Hp rating 1 20 6 3 Field weakening point 30 500 Hz 1 Hz Param 1 20 1 11 6 4 Voltage at field 15 200 1 100 1 20 weakening point X Vamot 6 5 V Hz curve mid 0 0 fmax 0 1 Hz 0 0 Hz 1 20 point frequency 6 6 V Hz curve mid 0 00 100 00 0 01 0 00 1 20 point voltage X Viamot 6 7 Output voltage at 0 00 100 0 0 01 0 00 1 20 zero frequency X Vamot 6 8 Overvoltage controller 0 1 1 1 0 Controller is off 1 20 1 Controller is on 6 9 Undervoltage controller 0 1 1 1 0 Controller is off 1 20 1 Controller is on Note Parameter value can be changed only when the drive is stopped Group 7 Protections Code Parameter Range Step Default Custom Description Page 7 1 Response to 0 3 1 0 0 No action 1 21 reference fault 1 Warning 2 Fault stop according par 4 7 3 Fault always coasting stop 7 2 Response to 0 3 1 2 0 No action 1 21 external fault 1 Warning
157. The value is set as a percentage of the motor s name plate nominal current parameter 1 13 motor s nominal current If parameter 1 13 is adjusted this parameter is automatically restored to its default value Figure 4 5 22 Setting the stall characteristics Stall area Par 7 11 f Hz gt Par 7 13 umcH7 Page 4 32 Pl control Application 7 12 Stall time The time can be set between 2 0 120 s This is the maximum allowed time for a stall stage There is an internal up down counter to count the stall time Refer to figure 4 5 23 If the stall time counter value goes above this limit the protection will cause a trip refer to parameter 7 10 7 13 Maximum stall frequency Pet all time counter The frequency can be set between 1 f na par 1 2 In the stall state the output frequency has to be smaller than this limit Refer to figure 4 5 22 Trip area Par 7 12 Trip warning par 7 10 UMCH7_12 Time gt Stall er No stall Figure 4 5 23 Counting the stall time Parameters 7 14 7 17 Underload protection General The purpose of motor underload protection is to ensure that there is load on the motor while the drive is running If the motor load is reduced there might be a problem in the process e g broken belt or dry pump Motor underload protection can be adjusted by setting the underload curve with parameters 7 15 and 7 16 The
158. X under over the set limit 3 14 this function generates a warning message via the digital output DO1 via a relay output RO1 or RO2 depending on the settings of Example 51 RO siR mina parameters 3 6 3 8 22 Roi 22 BOT 22 ROT 23 RO1 23 RO1 23 RO1 2 i i 1 1 uDooski9 t 1 gt Figure 5 5 15 Output frequency supervision 3 14 Torque limit supervision value The calculated torque value to be supervised by the parameter 3 13 3 15 Reference limit supervision function 0 No supervision 1 Low limit supervision 2 High limit supervision If the reference value goes under over the set limit 3 16 this function generates a warning message via the digital output DO1 or via a relay output RO1 or RO2 depending on the settings of the parameters 3 6 3 8 The supervised reference is the current active reference It can be source A or B reference depending on DIB6 input or the panel reference if panel is the active control source 3 16 Reference limit supervision value The frequency value to be supervised by the parameter 3 15 3 17 External brake off delay 3 18 External brake on delay The function of the external brake can be delayed from the start and stop control signals with these parameters See figure 5 5 16 The brake control signal can be programmed via the digital output DO1 or via one of relay outputs RO1 and RO2 see
159. XS V 3 2 380 400 380 V CX CXL CXS V 3 4 380 500 480 V CX CXL CXS V 3 5 525 690 575 V CXV36 Parameter conceal 0 1 0 Visibility of the parameters 0 All parameter groups visible 1 Only group 1 is visible Parameter value lock Disables parameter changes 0 Changes enabled 1 Changes disabled Table 4 4 1 Group 1 basic parameters If 1 2 gt motor synchr speed check suitabilit Note Parameter value can be changed for motor and ae ae y only when the drive is stopped Selecting 120 Hz 500 Hz range see page 4 5 Default value for a four pole motor and a nominal size drive Page 4 4 Pl control Application 4 4 2 Description of Group 1 parameters 1 1 1 2 Minimum maximum frequency Defines frequency limits of the drive The default maximum value for parameters 1 1 and 1 2 is 120 Hz By setting 1 2 120 Hz when the drive is stopped RUN indicator not lit parameters 1 1 and 1 2 are changed to 500 Hz At the same time the resolution of the panel is changed from 0 01 Hz to 0 1 Hz Changing the max value from 500 Hz to 120 Hz is done by setting parameter 1 2 119 Hz while the drive is stopped Acceleration time 1 deceleration time 1 These limits correspond to the time required for the output frequency to accelerate from the set minimum frequency par 1 1 to the set maximum frequency par 1 2 Pl controller gain This parameter defines the gai
160. accuracy of the torque calculation is decreased 7 14 Underload protection Operation 0 Not in use 1 Warning message 2 Fault message Tripping and warning will give a display indication with the same message code If tripping is set active the drive will stop and activate the fault stage Deactivating the protection by setting this parameter to 0 will reset the underload time counter to zero 7 15 Underload protection field weakening area load The torque limit can be set between 20 0 150 x Trmotor This parameter is the value for the minimum allowed torque when the output frequency is above the field weakening point Refer to the figure 2 5 32 If parameter 1 13 is adjusted this parameter is automatically restored to its default value Par 7 16 A Torque Par 7 15 Underload area f Hz l gt T Figure 2 5 32 Setting of minimum 5 Hz Field weakening chcH7_15 load point par 6 3 7 16 Underload protection zero frequency load The torque limit can be set between 10 0 150 x Trmotor This parameter is the value for the minimum allowed torque with zero frequency Refer to the figure 2 5 32 If parameter 1 13 is adjusted this parameter is automatically restored to its default value Page 2 35 go p N Local Remote Control Application Underload time This time can be set between 2 0 600 0 s This is the maximum allowed time
161. action 4 29 the motor 2 Fault 7 4 Ground fault protection 0 2 2 2 0 No action 4 29 2 Fault 7 5 Motor thermal protection 0 2 1 2 0 No action 4 30 1 Warning 2 Fault 7 6 Motor thermal protection 50 0 150 0 1 0 100 0 4 30 break point current X InmoTOR 7 7 Motor thermal protection 5 0 150 0 1 0 45 0 4 30 zero frequency current X InmoTOR 7 8 Motor thermal protection 0 5 300 0 0 5 17 0 Default value is set according 4 31 time constant minutes min min to motor nominal current 7 9 Motor thermal protection 10 500 Hz 1Hz 35 Hz 4 31 break point frequency 7 10 Stall protection 0 2 1 1 0 No action 4 32 1 Warning 2 Fault 7 11 Stall current limit 5 0 200 0 1 0 130 0 4 32 X InMoTOR 7 12 Stall time 2 0 120 0s 1 0s 15 0s 4 33 7 13 Maximum stall frequency 1 fmax 1 Hz 25 Hz 4 33 7 14 Underload protection 0 2 1 0 0 No action 4 33 1 Warning 2 Fault 7 15 Underload prot field 10 0 150 0 1 0 50 0 4 34 weakening area load X TaMoTOR 7 16 Underload protection 5 0 150 0 1 0 10 0 4 34 zero frequency load X TaMoTOR 7 17 Underload time 2 0 600 0s 1 0s 20 0s 4 34 Page 4 13 Pl control Application Group 8 Autorestart parameters Code Parameter Range Step Default Custom Description Page 8 1 Automatic restart 0 10 1 0 0 notin use 4 34 number of tries 8 2 Automatic restart mul
162. age 1 15 Standard Application 3 6 Digital output function 3 7 Relay output 1 function 3 8 Relay output 2 function Setting value Signal content 0 Not used Out of operation Digital output DO1 sinks current and programmable relay RO1 RO2 is activated when 1 Ready The drive is ready to operate 2 Run The drive operates 3 Fault A fault trip has occurred 4 Fault inverted A fault trip has not occurred 5 CX overheat warning The heat sink temperature exceeds 70 C 6 External fault or warning Fault or warning depending on parameter 7 2 7 Reference fault or warning Fault or warning depending on parameter 7 1 if analog reference is 4 20 mA and signal is lt 4mA 8 Warning Always if a warning exists 9 Reversed The reverse command has been selected 10 Multi step speed selected A multi step speed has been selected 11 At speed The output frequency has reached the set reference 12 Motor regulator activated Overvoltage or overcurrent regulator was activated 13 Output frequency supervision The output frequency goes outside of the set super vision low limit high limit par 3 9 and 3 10 14 Control from I O terminals Ext control mode selected with progr push button 2 Table 1 5 2 Output signals via DO1 and output relays RO1 and RO2 3 9 Output frequency limit supervision function 0 No supervision 1 Low limit supervision 2 High limit supervision If the output frequency goes under over
163. age 61 84 Control panel 7 6 Programmable push button menu The programmable push button menu can be entered from the main menu when the symbol M4 is visible on the first line of the Alpha numeric display In this menu there are four functions for the Enter button Each button has two positions On and Off The functions are available in this menu only In the other menus the button is used for its original purpose The status of the controlled function is shown through a feedback signal Enter the edit menu with the menu button To change the button value push the Enter button for a couple of seconds When you do this the Enter symbol 4 on the display inverts and the feedback value On Off changes The Enter symbol remains inverted as long as the Enter but ton is pushed down See Figure 7 9 Figure 7 9 Programmable push button Button Button Function Feedback information number description 0 1 Note B1 Reverse Changes the rotation Forwards Backwards Feedback direction of the motor information Available only when the flashes as long as control panel is the the command is active control source carried out B2 Active Selection between I O Control via Control from control terminals and control O terminals the panel source panel B3 Operating Resets the operating No resetting Reset of the hours trip hours trip counter when operating counter pushed hours trip Reset counter B4 MWh Resets
164. akening point The Page 3 34 Multi step Speed Control Application protection is not active below 5Hz the underload counter value is stopped Refer to figure 3 5 32 The torque values for setting the underload curve are set with percentage values which refer to the nominal torque of the motor The motor s nameplate data parameter 1 13 the motor s nominal current and drive s nominal current Icy are used to find the scaling ratio for the internal torque value If other than a standard motor is used with the drive the accuracy of the torque calculation is decreased 7 14 Underload protection Operation 0 Not in use 1 Warning 2 Fault Tripping and warning will give a display indication with the same message code If tripping is set active the drive will stop and activate the fault stage Deactivating the protection by setting this parameter to 0 will reset the underload time counter to zero 7 15 Underload protection field weakening area load The torque limit can be set between 20 0 150 x ThMotor This parameter is the value for the minimum allowed torque when the output frequency is above the field weakening point Refer to the figure 3 5 32 If parameter 1 13 is adjusted this parameter is automatically restored to its default value 7 16 Underload protection zero frequency load The torque limit can be set between 10 0 150 X Thmotor This parameter is the value for the minimum allowed torque with z
165. all protection Operation 0 Not in use 1 Warning 2 Trip function Tripping and warning will give a display indication with the same message code If tripping is set on the drive will stop and activate the fault stage Setting the parameter to 0 will deactivate the protection and will reset the stall time counter to zero Motor temperature 105 j Motor current Trip warning par 7 5 Vit Time constant T i Motor temperature 1 17 X 1 e 7 Time Figure 3 5 29 Calculating motor Changed with motor size and temperature adjusted with parameter 7 8 uncH7_s2 Page 3 33 Multi step Speed Control Application Parameters 7 10 7 13 Stall protection General Motor stall protection protects the motor from short time overload situations like a stalled shaft The reaction time of stall protection can be set shorter than with motor thermal protection The stall state is defined with two parameters 7 11 Stall Current and 7 13 Stall Frequency If the current is higher than the set limit and output frequency is lower than the set limit the stall state is true There is actually no real indication of the shaft rotation Stall protection is a type of overcurrent protection Stall current limit The current can be set between 0 0 200 x Inmotor In the stall stage the current has to be above this limit Refer to the figure 3 5 30 The value is set as a perce
166. ameter group 1 the applications also have parameter groups 2 8 available see figure B 1 Parameters of the groups sequentially follow each other and changing from the last parameter of one group to the first parameter of the next group or vice versa is done simply by pushing the arrow up arrow down buttons Groups 2 8 Group 1 Group 0 Figure B 1 Parameter Groups C Restoring default values of application parameters Default values of the parameters of the applications 1 to 7 can be restored by selecting the same application again with parameter 0 1 or by setting the value of parameter 0 2 to 1 See User s manual chapter 12 If parameter group 0 is not visible make it visible as follows 1 If parameter lock is set on open the lock parameter 1 16 by setting the value of the parameter to 0 2 If parameter conceal is set on open the conceal parameter 1 15 by setting the value of the parameter to 0 Group 0 becomes visible D Language selection The language of the text shown on the operator s panel can be chosen with parameter 0 3 See EXCEL VRL CX CXL CXS User s Manual chapter 11 Page 0 2 Standard Application STANDARD CONTROL APPLICATION par 0 1 2 CONTENTS 1 Standard Application 000 1 1 Ts 1 General esiis 1 2 1 2 Control WOM sarcictanciauesdecdorsatudgatarens 1 2 1 3 Control signal logic ee 1 3 1 4 Parameters G
167. ammable Contact closed start reverse External fault input Contact open no fault Contact closed fault Common for DIA1 DIA3 Connect to GND or 24V Control voltage output Voltage for switches same as 6 Ground for reference and controls Multi step speed select 1 DIB4 DIB5 Frequency ref Multi step speed select 2 open jopen Ref Vin par 1 17 0 closed open Multi step ref 1 open _ closed Multi step ref 2 closed closed Ref lp term 4 5 Contact open no action Contact closed fault reset Common for DIB4 DIB6 Connect to GND or 24V Programmable par 3 1 Range 0 20 mA R max 500 Q Programmable par 3 6 Open collector 1 lt 50 mA V lt 48 VDC Relay output 1 lt oe Programmable I O ground aie a Fault reset Output frequency READY Analog output X j Digital output READY RUN S RUN Programmable par 3 7 Relay output 2 25 Ro FAULT Programmable par 3 8 Figure 1 2 1 Default I O configuration and connection example of the Standard Application Page 1 2 Standard Application 1 3 Control signal logic BASIC PARAMETERS Group 1 1 5 Multi step speed reference 1 1 6 Multi step speed reference 2 1 17 Basic reference selection Panel reference Start Stop buttons RST
168. arning 2 Fault stop mode after fault according to parameter 4 7 3 Fault always coasting stop mode after fault A warning or a fault action and message is generated if the 4 20 mA reference signal is used and the signal falls below 4 mA The information can also be programmed via digital output DO1 and via relay outputs RO1 and RO2 Response to external fault 0 No response 1 Warning 2 Fault stop mode after fault according to parameter 4 7 3 Fault always coasting stop mode after fault A warning or a fault action and message is generated from the external fault signal in the digital input DIA3 The information can also be programmed into digital output DO1 and into relay outputs RO1 and RO2 Phase supervision of the motor 0 No action 2 Fault Phase supervision of the motor ensures that the motor phases have approximately equal current Ground fault protection 0 No action 2 Fault Ground fault protection ensures that the sum of the motor phase currents is zero The standard overcurrent protection is always working and protects the frequency converter from ground faults with high current levels Parameters 7 5 7 9 Motor thermal protection General Motor thermal protection is to protect the motor from overheating The CX CXL CXS drive is capable of supplying higher than nominal current to the motor If the load requires this high current there is a risk that the motor will be thermally overloaded Th
169. ated model assumes that the am bient temperature of the motor is 40 C Motor thermal protection can be adjusted by setting several parameters The ther mal current specifies the load current above which the motor is overloaded This current level is a function of the output frequency The curve for is set with pa rameters 7 6 7 7 and 7 9 Refer to the figure 2 5 28 The default values of these parameters are set from the motor nameplate data With the output current at the thermal stage will reach the nominal value 100 The thermal stage changes by the square of the current With output current at 75 from I the thermal stage will reach 56 value and with output current at 120 from the thermal stage would reach 144 value The function will trip the drive refer par 7 5 if the thermal stage will reach a value of 105 The response time of the thermal stage is determined with the time constant parameter 7 8 The larger the motor the longer it takes to reach the final temperature Page 2 31 Local Remote Control Application The thermal stage of the motor can be monitored through the display Refer to the table for monitoring items User s Manual table 7 3 1 CAUTION The calculated model does not protect the motor if the cooling of the motor is reduced either by blocking the airflow or due to dust or dirt te 7 6 7 7 Motor thermal protection Operation 0 Not in use 1 Warnin
170. ature 40 C 60 C 40 F 140 F relative humidity lt 95 no condensation allowed 3 3 Warranty This equipment is covered by the Honeywell standard drive warranty policy Honeywell distributors may have a different warranty period which is specified in their sales terms and conditions and warranty terms If any questions arise concerning the warranty please contact your distributor Page 12 84 Technical data 4 TECHNICAL DATA 4 1 General Figure 4 1 shows a block diagram of the CX CXL CXS drive The three phase AC Choke with the DC link capacitor forms an LC filter which together with the Diode Bridge produce the DC voltage for the IGBT nverter Bridge block The AC Choke smooths the HF disturbances from the utility to the drive and HF disturbances caused by the drive to the utility It also improves the waveform of the input current to the drive The IGBT bridge produces a symmetrical three phase pulse width modulated AC voltage to the motor The power drawn from the supply is almost entirely active power The Motor and Application Control block is based on microprocessor software The microprocessor controls the motor according to measured signals parameter value settings and commands from the Control I O block and the Control Panel The Motor and Application Control block gives commands to the Motor Control ASIC which calculates the IGBT switching positions Gate Drivers amplify these s
171. ax 40C ambient A oN kk Page 17 84 Technical data 525 600Vac 10 15 50 60 Hz 3 Input Series CX standard protected chassis Rated Horsepower and output current Catalog s Frame Size Dimensions Constant Torque Variable Torque WxHxD Number Enclosure Style inches ppe efu fe oan a 3 ime 5 5 10 1 M5 Protected 6 2 x 17 3 x 10 4 0 fie tol at 20 2 25 2 30 3 40 42 e e 60 62 M6 Protected 8 7 x 24 3 x 11 4 mes 8 5 100 100 0 122 145 M8 Chassis 19 5 x 35 0 x 13 9 CX1500HP v36 150 145 exaNOHE V8 200 200 4 9 3 0 CX 0500HP V 3 6 CX 0600HP V 36 5 6 5 0 7 1 1 0 1 1 Hp 3 5 0 5 20 25 30 40 50 75 0 5 N amp Ola H Ict 2 3 5 3 4 5 7 7 10 1 14 1 19 2 23 25 26 30 35 4 42 5 52 62 7 85 10 12 14 2 2 3 5 7 N QO O N N N NIN j N NIN ee Be oOo ojo CX2500HP V 36 250 CX3000HP V 36 300 00 50 00 CX4000HP V 3 6 00 00 00 2 8 aw 5 75 10 20 235 30 40 50 60 75 100 M12 Chassis 77 9 x 39 4 x 15 4 1213 constant torque load max 50C ambient variable torque load max 40C ambient 33 1 83 8 300 466 602 948 AJ OJN oja aN fo BR OO PO CO CO N o olaty n Q NS oO MN oa Q Q OD oO A oO fo fon N CX5000HP V36 500
172. been selected with parameter 1 8 this parameter defines the middle point frequency of the curve See figure 5 5 22 V Hz curve middle point voltage If the programmable V Hz curve has been selected with parameter 1 8 this parameter defines the middle point voltage of the curve See figure 5 5 22 Output voltage at zero frequency If the programmable V Hz curve has been selected with parameter 1 8 this parameter defines the zero frequency voltage of the curve See figure 5 5 22 U V Parameter 6 4 Parameter 6 6 Default 10 Parameter 6 7 Default 1 3 Parameter 6 5 Parameter 6 3 f Hz Default 5 Hz Figure 5 5 22 Programmable V Hz curve Page 5 30 DO Oo 7 1 2 7 3 7 4 Multi purpose Control Application Overvoltage controller Undervoltage controller These parameters allow the over undervoltage controllers to be switched ON or OFF This may be useful in cases where the utility supply voltage varies more than 15 10 and the application requires a constant speed If the controllers are ON they will change the motor speed in over undervoltage cases Overvoltage faster undervoltage slower Over undervoltage trips may occur when controllers are not used Response to the reference fault 0 No response 1 Warning 2 Fault stop mode after fault according to parameter 4 7 3 Fault always coasting stop mode after fault A warning or a fault action and message is generat
173. brake chopper 1 Brake chopper and brake resistor installed 2 External brake chopper When the drive is decelerating the motor the energy stored in the inertia of the motor and the load is fed into the external brake resistor If the brake resistor is selected correctly the drive is able to decelerate the load with a torque equal to that of acceleration See the separate Brake resistor installation manual Start function Ramp 0 The drive starts from 0 Hz and accelerates to the set reference frequency within the set acceleration time Load inertia or starting friction may cause prolonged acceleration times Page 2 26 4 7 4 8 4 9 Local Remote Control Application Flying start 1 The drive starts into a running motor by first finding the speed the motor is running at Searching starts from the maximum frequency down until the actual frequency reached The output frequency then accelerates decelerates to the set reference value at a rate determined by the acceleration deceleration ramp parameters Use this mode if the motor may be coasting when the start command is given With the flying start it is possible to ride through short utility voltage interruptions Stop function Coasting 0 The motor coasts to an uncontrolled stop with the CX CXL CXS off after the Stop command Ramp 1 After the Stop command the speed of the motor is decelerated based on the deceleration ramp time parameter If the r
174. braking current 100 Par 4 8 Free analog input gt Signal range Ch012K58 Page 5 21 Multi purpose Control Application 3 Reducing acceleration and A Factor R deceleration times The acceleration and deceleration times can be reduced with the free analog input signal according to the following formula Reduced time set acc decel time par 1 3 1 4 4 3 4 4 divided by the factor R from figure 5 5 10 Free analog input Signal range Ch012K59 Figure 5 5 10 Reducing acceleration and deceleration times 4 Reducing torque supervision i limit Torque limit 100 ES EAEE S E The set torque supervision P 3 14 limit can be reduced with the free analog input signal between 0 and set supervision limit par 3 14 see figure 5 5 11 Free analog input 7 gt Figure 5 5 11 Reducing torque 0 Signal range cho12k60 supervision limit 2 22 Motor potentiometer ramp time Defines how fast the electronic motor digital potentiometer value changes Page 5 22 3 1 3 2 3 3 3 4 3 5 Multi purpose Control Application Analog output function See table on page 5 10 Analog output filter time Filters the analog output signal See figure 5 5 12 Figure 5 5 12 Analog output filtering Analog output invert Inverts analog output signal max output signal minimum set value min output signal maximum
175. ce signal 0 Scaling off gt 0 Scaled maximum value Parameter value can be changed only when the drive is stopped Page 2 8 Parameter Local Remote Control Application Default Custom Description Free analog input signal selection 0 0 Not used 1 Vin analog voltage input 2 lin analog current input Free analog input function 0 No function 1 Reduces current limit par 1 7 2 Reduces DC braking current 3 Reduces acc and decel times 4 Reduces torque supervis limit Motor potentiometer ramp time 0 1 2000 0 Hz s Group 3 Output and supervision parameters Parameter Default Custom Description 2 22 Analog output function 1 0 Not used Scale 100 1 O P frequency O fmax 2 Motor speed 0O max speed 3 O P current 0 2 0 x Incx 4 Motor torque 0 2 x Trmot 5 Motor power 0 2 x Pamot 6 Motor voltage 0 100 xV mot 7 DC link volt 0 1000 V Analog output filter time 0 00 10 00 s Analog output inversion 0 1 0 Not inverted 1 Inverted Analog output minimum 0 1 0 0mA 1 4mA Analog output scale 10 1000 Digital output function 0 21 0 Not used 1 Ready 2 Run 3 Fault 4 Fault inverted 5 CX overheat warning 6 External fault or warning 7 Reference fault or warning 8 Warnin
176. ception of factory recommended filters Page 2 84 Receiving 1 3 Grounding and ground fault protection The CX CXL CXS must always be grounded with a grounding conductor connected to the grounding terminal The CX CXL CXS s ground fault protection protects only the CX CXL CXS if a ground fault occurs in the motor or in the motor cable Due to the high leakage current fault current protective devices do not necessarily operate correctly with drives When using this type of device its function should be tested in the actual installation 1 4 Running the motor Warning Symbols For your own safety please pay special attention to the instructions marked with these warning symbols Dangerous voltage General warning Before running the motor make sure that the motor is mounted 1 properly 2 Maximum motor speed frequency should never be set to exceed the motor s and driven machine s capability 3 Before reversing the rotation of the motor shaft make sure that this can be done safely Page 3 84 Directives 2 DIRECTIVES 2 1 CE label The CE label on the product guarantees the free movement of the product in the EU area According to the EU rules this guarantees that the product is manufactured in accordance with different directives relating to the product CX CXL CXSs are equipped with the CE label in accordance with the Low Voltage Directive LVD and the EMC directive
177. cted Acceleration Deceleration time 2 selected Forward Reverse If two or more inputs are programmed to reverse only one of them is required to reverse Jog speed selected for freqency reference Resets all faults Stops acceleration and deceleration until the contact is opened In the stop mode the DC braking operates until the contact is opened see figure 4 5 1 DC brake current is set with parameter 4 8 Reference increases until the contact is opened A Output frequency Param 4 10 A t gt UD012K32 DIA3 RUN STOP a DIA3 as DC brake command input and stop mode Ramp A t L UD012K32 DIA3 RUN STOP b DIA3 as DC brake command input and stop mode Coasting Page 4 15 2 3 2 4 2 5 Note 2 6 Pl control Application DIA3 function Selections are same as in 2 1 except 10 Motor digital contact closed Reference decreases until the contact is pot DOWN opened V Signal range 0 Signal range 0 10 V 1 Custom setting range from custom minimum par 2 4 to custom maximum par 2 5 V custom setting minimum maximum These parameters set V for any input signal span within 0 10 V Minimum setting Set the V signal to its minimum level select parameter 2 4 press the Enter button Maximum setting Set the V signal to its maximum level select parameter 2 5 press the Enter button
178. cy fmin fmax 0 1 Hz 0 0 Hz 0 Prohibit range 1 is off 5 29 range 1 high limit 1 1 1 2 5 3 Prohibit frequency fmin 0 1 Hz 0 0 Hz 5 29 range 2 low limit par 5 4 5 4 Prohibit frequency fmin fmax 0 1 Hz 0 0 Hz 0 Prohibit range 2 is off 5 29 range 2 high limit 1 1 1 2 5 5 Prohibit frequency fmin 0 1 Hz 0 0 Hz 5 29 range 3 low limit par 5 6 5 6 Prohibit frequency fmin fmax 0 1 Hz 0 0 Hz 0 Prohibit range 3 is off 5 29 range 3 high limit 1 1 1 2 Group 6 Motor control parameters Code Parameter Range Step Default Custom Description Page 6 1 Motor control mode 0 1 1 0 0 Frequency control 5 29 1 Speed control 6 2 Switching frequency 1 0 16 0 kHz 0 1 kHz 10 3 6kH4 Depends on Hp rating 5 30 6 3 Field weakening 9 30 500 Hz 1 Hz Param 5 30 1 11 6 4 Voltage at field 15 200 1 100 5 30 weakening point X Vnmot 6 5 V Hz curve mid 0 0 fmax 0 1 Hz 0 0 Hz 5 30 point frequency 6 6 V Hz curve mid 0 00 100 00 0 01 0 00 5 30 point voltage X Vnmot 6 7 Output voltage at 0 00 100 00 0 01 0 00 5 30 zero frequency X Vnmot 6 8 Overvoltage controller 0 1 1 1 0 Controller is not operating 5 31 1 Controller is operating 6 9 Undervoltage controller 0 1 1 1 0 Controller is not operating 5 31 1 Controller is operating Note Param
179. d curve form with the frequency in the area from 0 Hz to the field weakening 1 point par 6 3 where the nominal voltage is also supplied to the motor See figure 6 4 1 The motor runs undermagnetized below the field weakening point and produces less torque and electromechanical noise A squared V Hz ratio can be used in applications where the torque demand of the load is proportional to the square of the speed e g in centrifugal fans and pumps Page 6 5 1 9 Pump and fan control Application Field weakening point Default Nominal voltage of the motor Linear Default Nominal frequency of the Squared motor Hz Figure 6 4 1 Linear and squared V Hz curves Programm The V Hz curve can be programmed with three different points V Hz curve The parameters for programming are explained in chapter 6 5 2 2 A programmable V Hz curve can be used if the standard settings do not satisfy the needs of the application See figure 6 4 2 U V Parameter 6 4 Parameter 6 6 Default 10 Parameter 6 7 Default 1 3 Parameter 6 5 Parameter 6 3 f Hz Default 5 Hz Figure 6 4 2 Programmable V Hz curve V Hz optimization Automatic The voltage to the motor changes automatically which makes the torque boost NOTE ZN motor to produce torque enough to start and run at low frequencies The voltage increase depends on the motor type and horsepower Automatic
180. dditonal functions Programmable Start stop and Reverse signal logic Analog input signal range selection Two frequency in band limit indications Torque in band limit indication Reference in band limit indication Second set of ramps and choice of linear or S curve DC braking at start and stop Three prohibit frequency lockout ranges Programmable V Hz curve and switching frequency Autorestart function Motor Thermal and Stall protection fully programmable Motor Underload protection Unused analog input functions Page 82 84 Application package 12 5 Pl control Application In the Pl control Application there are two O terminal control sources Source A is a Pl controller and source B is a direct frequency reference The control source is selected with the DIB6 input The Pl controller reference can be selected from the analog inputs motor potentiometer or panel reference The actual value can be selected from the analog inputs or from a mathematical function acting on the analog inputs The direct frequency reference can be used for control without the Pl controller The frequency reference can be selected from the analog inputs or the panel reference All outputs are freely programmable Other additonal functions Programmable Start stop and Reverse signal logic Analog input signal range selection Two frequency in band limit indications Torque in band limit indicatio
181. drive controls the output frequency output freq resolution 0 01 Hz 1 Speed control The I O terminal and panel references are speed sensorless vector references and the drive controls the motor speed control accuracy 0 5 Switching frequency Motor noise can be minimized by using a high switching frequency Increasing the switching frequency reduces the current capacity of the CX CXL CXS Before changing the frequency from the factory default 10 kHz 3 6 kHz gt 40 Hp check the drive derating in the curves shown in figures 5 2 2 and 5 2 3 in chapter 5 2 of the User s Manual Field weakening point Voltage at the field weakening point The field weakening point is the output frequency where the output voltage reaches the set maximum value Above that frequency the output voltage remains at the set maximum value Below that frequency output voltage depends on the setting of the V Hz curve parameters 1 8 1 9 6 5 6 6 and 6 7 See figure 3 5 27 When the parameters 1 10 and 1 11 nominal voltage and nominal frequency of the motor are set parameters 6 3 and 6 4 are also set automatically to the corresponding values If you need different values for the field weakening point and the maximum output voltage change these parameters after setting parameters 1 10 and 1 11 V Hz curve middle point frequency If the programmable V Hz curve has been selected with parameter 1 8 this parameter defines the middle frequency p
182. ds in the menu Menu button right Move backwards in the menu Browser button up Move in the main menu and between pages inside the same submenu Change value Browser button down Move in the main menu and between pages inside the same submenu Change value Enter button Acknowledgement of changed value Fault history reset Function as programmable button Reset button Fault resetting Start button Starts the motor if the panel is the active control source Stop button Stops the motor if the panel is the active control source Page 56 84 Control panel 7 2 Panel operation The panel is arranged in menus and submenus The menus are used for the display of measurement and control signals parameter settings reference values fault displays contrast and the programmable buttons The desired submenu can also be entered from the main menu by using the menu M7 me C1 Contrast Contrast 15 15 M6 Fault History F 1 9 coe ee F 1 9 lt gt 2 Over voltage F1 I 1 Overcurrent buttons when the letter M and the number of the menu in question are visible on the first line of the display See the CX CXL CXS User s Manual and the Application Manual for the specific parameters available for the CX CXL CXS setup needed The arrow gt in the lower right corner indicates a further submenu Vv E au istory rese Scroll the active fault list B1 EE o o RI J
183. e 2 4 2 ULV Parameter 6 4 Default nominal Field weakening point Parameter 6 6 Default 10 Default nominal frequency of the motor Parameter 6 7 Default 1 3 Parameter 6 5 Parameter 6 3 f Hz Default 5 Hz Figure 2 4 2 Programmable V Hz curve Page 2 6 1 9 Local Remote Control Application V Hz optimization Automatic The voltage to the motor changes automatically which allows the torque motor to produce torque enough to start and run at low frequencies boost The voltage increase depends on the motor type and horsepower Automatic torque boost can be used in applications where starting torque due to starting friction is high e g in conveyors NOTE In high torque low speed applications it is likely the motor will overheat If the motor has to run for a prolonged time under these conditions ran special attention must be paid to cooling of the motor Use external cooling for the motor if the temperature rise is too high Nominal voltage of the motor Find this value V from the nameplate of the motor This parameter sets the voltage at the field weakening point parameter 6 4 to 100 xV Nominal frequency of the motor nmotor Find the nominal frequency f from the nameplate of the motor This parameter sets the field weakening point parameter 6 3 to the same value Nominal speed of the motor Find this value n from the nameplate of the motor Nominal curr
184. e 2 5 9 sash max signal minimum set speed Unfiltered signal min signal maximum set speed um 100 4 Analog input I filter time Filtered signal Filters out disturbances from the 63 J incoming analog l signal A long filtering time makes regulation response slower See figure 2 5 10 t s gt Par 2 12 UD009K30 Figure 2 5 10 Analog input filter time Page 2 19 Local Remote Control Application 2 13 Source B Start Stop logic selection See parameter 2 1 settings 0 3 2 14 Source A reference scaling minimum value maximum value 2 15 Setting limits 0 lt par 2 14 lt par 2 15 lt par 1 2 If par 2 15 0 scaling is set off See figures 2 5 11 and 2 5 12 In figures voltage input Vin with signal range 0 10 V selected for source A reference A Output 4 Output frequency frequency Max freq par 1 2 Max freq par 1 2 i Anal T Min freq par 1 1 i input V Min freq par 1 1 A 0 10 cho12K12 0 10 ae Figure 2 5 11 Reference scaling Figure 2 5 12 Reference scaling par 2 15 0 2 16 Source B reference scaling 2 1 minimum value maximum value See parameters 2 14 and 2 15 Free analog input signal Selection of input signal of a free analog input an input not used for reference signal 0 Not in use 1 Voltage signal Vin 2 Current signal lin Free analog input signal function A Torq
185. e User s Manual Field weakening point Voltage at the field weakening point The field weakening point is the output frequency where the output voltage reaches the set maximum value parameter 6 4 Above that frequency the output voltage remains constant at the set maximum value Below that frequency the output voltage depends on the setting of the V Hz curve parameters 1 8 1 9 6 5 6 6 and 6 7 See figure 1 5 16 When the parameters 1 10 and 1 11 nominal voltage and nominal frequency of the motor are set parameters 6 3 and 6 4 are also set automatically to the same values If you need different values for the field weakening point and the maximum output voltage change these parameters after setting parameters 1 10 and 1 11 Page 2 29 6 5 6 6 6 7 ono 7 1 Local Remote Control Application V Hz curve middle point frequency If the programmable V Hz curve has been selected with parameter 1 8 this parameter defines the middle frequency point of the curve See figure 2 5 27 V Hz curve middle point voltage If the programmable V Hz curve has been selected with parameter 1 8 this parameter defines the middle point voltage of motor nominal voltage of the curve See figure 2 5 27 Output voltage at zero frequency If the programmable V Hz curve has been selected with parameter 1 8 this parameter defines the zero frequency voltage of motor nominal voltage of the curve See figure
186. e acceleration and deceleration ramp shape can be programmed with these parameters Setting the value 0 gives you a linear ramp shape The output frequency immediately follows the input with a ramp time set by parameters 1 3 1 4 4 3 4 4 for Acc Dec time 2 Setting 0 1 10 seconds for 4 1 4 2 causes an S shaped ramp The speed changes are smooth Parameter 1 3 1 4 4 3 4 4 determines the ramp time of the acceleration deceleration in the middle of the curve See figure 4 5 14 A Hz Figure 4 5 14 S shaped acceleration nae deceleration t UDO09K20 Acceleration time 2 Deceleration time 2 These values correspond to the time required for the output frequency to accelerate from the set minimum frequency par 1 1 to the set maximum frequency par 1 2 With this parameter it is possibile to set two different acceleration deceleration times for one application The active set can be selected with the programmable signal DIA3 of this application see parameter 2 2 Page 4 24 4 5 4 6 4 7 4 8 4 9 Pl control Application Brake chopper 0 No brake chopper 1 Brake chopper and brake resistor installed 2 External brake chopper When the drive is decelerating the motor the energy stored in the inertia of the motor and the load is fed into the external brake resistor If the brake resistor is selected correctly the drive is able to decelerate the load with a t
187. e cases where one motor is connected with one cable to the drive Always pay attention to the local authority regulations and installation conditions 6 1 1 Utility cable Utility cables for the different EU EMC levels are defined in the table 6 1 1 6 1 2 Motor cable Motor cables for the different EU EMC levels are defined in the table 6 1 1 6 1 3 Control cable Control cables are specified in chapter 6 2 1 Cable level N level Utility cable 1 1 Motor cable 2 2 Control cable 3 3 Table 6 1 1 Cable types for the different EMC levels 1 The power cable which is suitable for the installation ampacity and voltage Shielded cable is not required 2 The power cable contains a concentric protection wire and is suitable for the ampacity and voltage 3 The control cable is a compact low impedance shielded cable Page 33 84 Cu cable be Ict Fuse LINE amp MOTOR It Fuse Ga e P Ground ie oa O oal oo pol a a Ni on A co po po a oo r ue a 15 40 60 150 180 200 350MCM 000 TC COO 500 6 2x 550MCM 250MCM CONTACT FACTORY Table 6 1 2 Utility motor cables and fuse recommendations according to output currents Ic and lyr 500V range Cu cable LINE amp MOTOR Ground Cu cable LINE amp MOTOR Ground a N a A oo ro a D A gial oja 00 ro po A o o ella a ojl N A a fo
188. e figure 3 5 8 Analog input custom setting minimum maximum With these parameters you can scale the input current to correspond to a minimum and maximum frequency range See figure 3 5 8 Minimum setting Set the lip signal to its minimum level select parameter 2 9 press the Enter button Maximum setting Set the lp signal to its maximum level select parameter 2 10 press the Enter button Note The parameter values can only be set with this procedure not with arrow up arrow down buttons Analog input I inversion is source A frequency reference par 1 5 0 default Parameter 2 11 0 no inversion of input Parameter 2 11 1 inversion of input see figure 3 5 9 max I signal minimum set speed min l signal maximum set speed Analog input I filter time Filters out disturbances from the incoming analog signal A long filtering time makes regulation response slower See figure 3 5 10 A Output frequency POR ee TA eis te Site Sw ee ee ate par 2 8 2 lin custom Par 2 8 0 lin 0 20 mA Par 2 1377 77571 lin 4 20 mA 1 i i term 3 4 ama sai 20 mA Par 2 9 ar 2 10 UDoiokee Figure 3 5 8 Analog input l scaling A Output frequency Par 2 TARN Sao ARE SSeS Sete ae ee ae 1 par 2 8 2 1 l lin custom 1 I par 2 8 1 ta lt lin 4 20 mA 1 1 1 oki i i 1 i par 2 8 0 i i lin 0
189. e is no external fan cooling the motor If an external fan is used this parameter can be set to 90 or higher Page 2 32 Local Remote Control Application The value is set as a percentage of the motor s nominal nameplate current parameter 1 13 not the drive s nominal output current The motor s nominal current is the current which the motor can stand in direct on line use without being overheated If you change parameter 1 13 this parameter is automatically restored to the default value Setting this parameter or parameter 1 13 does not affect to the maximum output current of the drive Parameter 1 7 alone determines the maximum output current of the drive Motor thermal protection time constant This time can be set between 0 5 300 minutes This is the thermal time constant of the motor The larger the motor the greater the time constant The time constant is defined as the time that it takes the calcu lated thermal stage to reach 63 of its final value The motor thermal time is specific to a motor design and it varies between different motor manufacturers The default value for the time constant is calculated based on the motor nameplate data from parameters 1 12 and 1 13 If either of these parameters is reset then this parameter is set to default value If the motor s tg time is known given by the motor manufacturer the time constant parameter could be set based on t time As a rule of thumb the mo
190. e stripped according to the figure 6 1 4 2 and table 6 1 4 2 Open the cover of the CX CXL according to figure 6 1 4 3 Remove sufficient plugs from the cable cover open chassis cable cover or from the bottom of the NEMA 1 12 units Pass cables through the holes in the cable cover Connect the utility motor and control cables to the correct terminals See figures 6 1 4 3 16 CX external RFI filter See RFI filter option manual The installation instructions for M11 and M12 frames are explained in the separate manual for M11 M12 units Contact your Honeywell distributor for more information Cable installation consitent with UL instructions is explained in chapter 6 1 4 1 Check that control cable wires do not make contact with electrical components in the device Connect optional brake resistor cable if required Ensure that the ground cable is connected to the yterminal of the frequency converter and motor For open panel units 150 500 Hp connect the isolator plates of the protective cover and terminals according to figure 6 1 4 11 Page 36 84 Wiring If a shielded power cable is used connect its shield to the ground terminals of the drive motor and supply panel Mount the cable cover open chassis units and the unit cover Ensure that the control cables and internal wiring are not trapped between the cover and the body of the unit NOTE The connection of the transformer inside the unit in frame sizes M7 M12
191. e via the digital output DO1 or via a relay output RO1 or RO2 depending on the settings of the parameters 3 6 3 8 Output frequency limit 1 supervision value Output frequency limit 2 supervision value The frequency value to be supervised by the parameter 3 9 3 11 See figure 2 5 20 Torque limit supervision function 0 No supervision 1 Low limit supervision 2 High limit supervision A If the calculated torque value finz Par 3 922 goes under over the set limit sa dtc 33 ce A Ps 3 14 this function generates a warning message via the digital output DO1 or via a relay output RO1 or RO2 depending on the settings of the parameters 3 6 3 8 Example 24 RO 21 RO1 21 RO 22 RO1 22 RO1 122 RO1 23 RO1 23 RO1 23 RO1 5 uUD0o12K19 t gt Figure 2 5 20 Output frequency supervision Torque limit supervision value The calculated torque value to be supervised by the parameter 3 13 Torque supervision value can be reduced below the setpoint with a free analog input signal see parameters 2 18 and 2 19 Reference limit supervision function 0 No supervision 1 Low limit supervision 2 High limit supervision If the reference value goes under over the set limit 3 16 this function generates a warning message via the digital output DO1 or via a relay output RO1 or RO2 depending on the settings of the param
192. e voltage of the motor changes following a squared curve form with the frequency in the area from 0 Hz to the field weakening 1 point par 6 3 where the nominal voltage is also supplied to the motor See figure 1 4 2 The motor runs undermagnetized below the field weakening point and produces less torque and electromechanical noise A squared V Hz ratio can be used in applications where the torque demand of the load is proportional to the square of the speed e g in centrifugal fans and pumps Va Default Nominal voltage of the moto Field weakening point Linear Default Nominal frequency of the Squared motor J Hz Figure 1 4 2 Linear and squared V Hz curves Programm The V Hz curve can be programmed with three different points V Hz curve The parameters for programming are explained in chapter 1 5 2 A programmable V Hz curve can be used if the standard settings 2 do not satisfy the needs of the application See figure 1 4 3 U V V Parameter 6 4 Default nominal voltage of the motor Field weakening point Parameter 6 6 Default 10 Default nominal frequency of the motor Parameter 6 7 Default 1 3 Parameter 6 5 Parameter 6 3 f Hz Default 5 Hz Figure 1 4 3 Programmable V Hz curve 1 9 V Hz optimization Automatic The voltage to the motor changes automatically which allows the torque motor to produce enough torque to start and run at
193. ection 5 Reverse 6 Jog speed 7 Fault reset 8 Acc dec operation prohibit 9 DC braking command 10 Motor digital pot UP 4 15 DIA3 function terminal 10 0 Not used 1 Ext fault closing contact 2 External fault opening contact 3 Run enable 4 Acc dec time selection 5 Reverse 6 Jog speed 7 Fault reset 8 Acc dec operation prohibit 9 DC braking command 10 Motor digital pot DOWN 4 16 Vin signal range 0 1 0 0 10 V 1 Custom setting range Vin custom setting min 0 00 100 00 0 00 Vin custom setting max 0 00 100 00 100 00 Vin signal inversion 0 1 0 0 Not inverted 1 Inverted Vin signal filter time 0 00 10 00 s 0 01 s 0 No filtering lin signal range 0 2 1 0 0 20 mA 1 4 20 mA 2 Custom setting range lin custom setting min 0 00 100 00 0 00 lin custom setting max 0 00 100 00 100 00 lin signal inversion 0 1 0 0 Not inverted 1 Inverted lin Signal filter time 0 01 10 00s 0 01s 0 No filtering DIB5 function terminal 15 0 9 1 0 Not used 1 Ext fault closing contact 2 External fault opening contact 3 Run enable 4 Acc dec time selection 5 Reverse 6 Jog speed 7 Fault reset 8 Acc dec operation prohibit 9 DC braking command Note Parameter
194. ed if 4 20 mA reference signal is used and the signal falls below 4 mA The information can also be programmed via digital output DO1 and via relay outputs RO1 and RO2 Response to external fault 0 No response 1 Warning 2 Fault stop mode after fault according to parameter 4 7 3 Fault always coasting stop mode after fault A warning or a fault action and message is generated from the external fault signal in the digital input DIA3 The information can also be programmed into digital output DO1 and into relay outputs RO1 and RO2 Phase supervision of the motor 0 No action 2 Fault Phase supervision of the motor ensures that the motor phases have approximately equal current Ground fault protection 0 No action 2 Fault Ground fault protection ensures that the sum of the motor phase currents is zero The standard overcurrent protection is always working and protects the frequency converter from ground faults with high current levels Parameters 7 5 7 9 Motor thermal protection General Motor thermal protection is to protect the motor from overheating The CX CXL CXS drive is capable of supplying higher than nominal current to the motor If the load requires this high current there is a risk that motor will be thermally overloaded This is true especially at low frequencies With low frequencies the cooling effect of the motor fan is reduced and the capacity of the motor is reduced If the motor is equipped
195. ed only when the drive is stopped Page 2 11 Local Remote Control Application Group 6 Motor control parameters Code Parameter Range Step Default Custom Description Page 6 1 Motor control mode 0 1 1 0 0 Frequency control 2 29 1 Speed control 6 2 Switching frequency 1 0 16 0kHz 0 1 kHz 10 3 6KHz Depends on Hp rating 2 29 6 3 Field weakening O 30 500 Hz 1 Hz Param 2 29 1 11 6 4 Voltage at field 15 200 1 100 2 29 weakening point X Vamot 6 5 V Hz curve mid 0 0 fmax 0 1 Hz 0 0 Hz 2 30 point frequency 6 6 V Hz curve mid 0 00 100 00 0 01 0 00 2 30 point voltage X Vamot 6 7 Output voltage at 0 00 100 00 0 01 0 00 2 30 zero frequency X Vamot 6 8 Overvoltage controller 0 1 1 1 0 Controller is not operating 2 30 1 Controller is operating 6 9 Undervoltage controller 0 1 1 1 0 Controller is not operating 2 30 1 Controller is operating Note Parameter value can be changed only when the drive is stopped Page 2 12 Group 7 Protections Local Remote Control Application Code Parameter Range Step Default Custom Description Page 7 1 Response to 0 3 1 0 0 No action 2 30 reference fault 1 Warning 2 Fault stop according to par 4 7 3 Fault always coasting stop 7 2 Response to 0 3 1 0 0 No
196. ee ae SS EMA SR amp ne OT Param 3 5 pg 50 T S PSS St ir of oe SS a SS Par 3 4 1 07 f 4mA Max value of signal Par 3 4 0 selected by param 3 1 OmA t gt 0 0 5 1 0 Ch012K18 Page 4 21 3 6 3 7 3 8 ww Pl control Application Digital output function Relay output 1 function Relay output 2 function Setting value Signal content 0 Not used Out of operation Digital output DO1 sinks current and programmable relay RO1 RO2 is activated when 1 Ready The drive is ready to operate 2 Run The drive operates motor is running 3 Fault A fault trip has occurred 4 Fault inverted a fault trip has not occurred 5 CX overheat warning The heat sink temperature exceeds 70 C 6 External fault or warning Fault or warning depending on parameter 7 2 7 Reference fault or warning Fault or warning depending on parameter 7 1 if analog reference is 4 20 mA and signal is lt 4mA 8 Warning Always if a warning exists see Table 7 10 1 in Users manual 9 Reversed The reverse command has been selected 10 Jog speed Jog speed has been selected with digital input 11 At speed The output frequency has reached the set reference 12 Motor regulator activated Overvoltage or overcurrent regulator was activated 13 Output frequency supervision 1 The output frequency goes outside of the set supervision Low limit High limit par 3 9 and 3
197. eed changes are smooth Parameter 1 3 1 4 4 3 4 4 determines the ramp time of the acceleration deceleration in the middle of the curve See figure 3 5 22 Figure 3 5 22 S shaped acceleration ras j 4 1 4 2 t deceleration UD009K20 4 3 Acceleration time 2 4 4 Deceleration time 2 These values correspond to the time required for output frequency to accelerate from the set minimum frequency par 1 1 to the set maximum frequency par 1 2 With this parameter it is possibile to set two different acceleration deceleration times for one application The active set can be selected with the programmable signal DIA3 See parameter 2 2 Acceleration deceleration times can be reduced with a free analog input signal See parameters 2 18 and 2 19 Page 3 25 4 5 4 6 4 7 4 8 Multi step Speed Control Application Brake chopper 0 No brake chopper 1 Brake chopper and brake resistor installed 2 External brake chopper When the drive is decelerating the motor the energy stored in the inertia of the motor and the load is fed into the external brake resistor If the brake resistor is selected correctly the drive is able to decelerate the load with a torque equal to that of acceleration See the separate Brake resistor installation manual Start function Ramp 0 The drive starts from 0 Hz and accelerates to the set reference frequency within the set acceleration time Load i
198. eference potentiometer Terminal 10 5 NOTE Signal Parameters are explained in chapter 10 4 The function of motor thermal and stall protection in the Basic Application is explained in chapter Remember to connect the CMA and CMB inputs Description 10V_ Reference output Voltage for a potentiometer etc Vint Analog input voltage range 0 10 V DC Frequency reference activated if terminals 14 and 15 open and parameter 1 17 0 default value I O ground Ground for reference and controls Analog input current range 0 20 mA Frequency reference activated if terminals 14 and 15 closed or open and parameter 1 17 1 Control voltage output Voltage for switches etc max 0 1 A I O ground Ground for reference and controls Start forward Contact closed start forward Start reverse Contact closed start reverse External fault input Contact open no fault Contact closed fault Common for DIA1 DIA3 Connect to GND or 24V Control voltage output Voltage for switches same as 6 I O ground Ground for reference and controls Multi step speed select 1 DIB4 DIBS Frequency ref Multi step speed select 2 open open Ref Vin par 1 17 0 closed open Multi step ref 1 open closed Multi step ref 2 closed closed Ref lip term 4 5 Fault reset Contact open no act
199. egenerated energy is high it may be necessary to use an external braking resistor for faster deceleration DC braking current Defines the current injected into the motor during DC braking The DC braking current can be reduced from the setpoint with a external free analog input signal see parameters 2 18 and 2 19 DC braking time at stop Determines whether DC braking is ON or OFF It also determines the braking dura tion time of the DC brake when the motor is stopping The function of the DC brake depends on the stop function parameter 4 7 See figure 2 5 23 0 gt 0 DC brake is not used DC brake is in use and its function depends of the stop function parameter 4 7 The time is set by the value of parameter 4 9 Stop function 0 coasting After the stop command the motor will coast to a stop with the SV9000 off With DC injection the motor can be electrically stopped in the shortest possible time without using an optional external braking resistor The braking time is scaled according to the frequency when the DC braking starts If the frequency is gt nominal frequency of the motor par 1 11 the value of parameter 4 9 determines the braking time When the frequency is lt 10 of the nominal the braking time is 10 of the set value of parameter 4 9 See figure 2 5 13 Stop function 1 ramp After a Stop command the speed of the motor is reduced based on the deceleration ramp parameter If no reg
200. elay output 2 function Setting value Signal content 0 Not used 1 Ready 2 Run 3 Fault 4 Fault inverted 5 CX overheat warning 6 External fault or warning 7 Reference fault or warning 8 Warning 9 Reversed 10 Jog speed selected 11 At speed 12 Motor regulator activated 13 Output frequency supervision 1 14 Output frequency supervision 2 15 Torque limit supervision 16 Active reference limit supervision 17 External brake control 18 Control from I O terminals 19 Drive 20 Unrequested rotation direction 21 External brake control inverted Out of operation Digital output DO1 sinks current and programmable relay RO1 RO2 is activated when The drive is ready to operate The drive operates motor is running A fault trip has occurred A fault trip has not occurred The heat sink temperature exceeds 70 C Fault or warning depending on parameter 7 2 Fault or warning depending on parameter 7 1 if analog reference is 4 20 mA and signal is lt 4mA Always if a warning exists The reverse command has been selected The Jog speed has been selected with digital input The output frequency has reached the set reference Overvoltage or overcurrent regulator was activated The output frequency goes outside of the set supervision Low limit High limit par 3 9 and 3 10 The output frequency goes outside of the set supervision Low limit High limit pa
201. em parameter group 0 80 11 1 Parameter table ee 80 11 2 Description oases 80 Application package sssseseeeee 82 12 1 Application selection 82 12 2 Standard Application 82 12 3 Local Remote Application 82 12 4 Multi step Speed Application 82 12 5 Pl control Application 83 12 6 Multi purpose Control App 83 12 7 Pump and Fan Control App 83 Options cscs iana aai 84 13 1 Remote control Dox ee 84 13 2 External filters 00 0 84 13 3 Dynamic braking eee 84 13 4 I O expander board 005 84 13 5 Communications 0 ee 84 13 6 Graphics control panel 84 13 7 FCDRIVE s sxagcda he cant ocevecelen 84 13 8 Control panel door mount kit 84 13 9 Protected chassis cable cover for 75 125 Hp open chassis units 84 13 10 Others e eraa 84 Page 1 84 Safety 1 SAFETY ONLY A QUALIFIED ELECTRICIAN CAN CARRY OUT THE ELECTRICAL INSTALLATION 1 1 Warnings Internal components and circuit boards except the isolated I O terminals are at utility potential when the CX CXL CXS is connected to the line This voltage is extremely dangerous and may cause death or severe injury if you come in contact with it When the CX CXL CXS is connected to the utility the motor connections U T1 V T2 W T3 and DC link brake resistor connections are live even if the motor is
202. eneration occurs due to load inertia DC braking starts at a speed defined by parameter 4 10 Page 2 27 Local Remote Control Application A A fout Hz fout Hz a Output frequency N ee Motor speed N is Se Output frequency S Motor speed DC braking ON S 0 1 x fn Be S DC braking ON SS t t 4 S gt a t 1xpar 4 9 gt a t 0 1 x par 4 9 RUN RUN UD012kK21 STOR STOP e Figure 2 5 23 DC braking time when par 4 7 0 The braking time is defined A by par 4 9 If the load has a fout HA high inertia use an external braking resistor for faster deceleration See figure 2 5 24 Motor speed Output frequency DC braking Par 4 10 t rae t Par 4 9 Figure 2 5 24 DC braking STOP uootakes time when par 4 7 1 gt 4 10 Execute frequency of DC brake during ramp Stop See figure 2 5 24 4 11 DC brake time at start 0 DC brake is not used gt 0 The DC brake is activated by the start command given This parameter defines the time before the brake is released After the brake is released the output frequency increases according to the set start function parameter 4 6 and the acceleration t parameters 1 3 4 1 or 4 l Par 4 11 i 2 4 3 See figure 2 5 25 gt RUN hie Figure 2 5 25 DC braking time STOP UD012K22 at start Page 2 28 5 1 5 6
203. ent derating 710 kHz curves for 400 500 V I variable torque 6 oxox cross VP r 10 kHz Ask factory for details DN CX CXL 0300 0400HP lyr 10 kHz CX CXL 0220 0300HP lyr 16 kHz CX CXL 2500 3000HP lyt 3 6kHz CX CXL 2500 3000HP lyr 10 kHz CX CXL 0900 1250HP CX CXL 2000 2500HP lyy 3 6 kHz lyy 10 kHz CX CXL 1600 2000HP CX CXL 0900 125HP lyr 3 6 kHz g ok CX CXL 1600 2000HP lyy 10 kHz D CX CXL 0750 1000HP lyy 10 kHz CX CXL 1320 1750HP lyr 10 kHz Q oxox osso orson B VT I 10 kHz VT Figure 5 2 3 c Figure 5 2 3 d Figure 5 2 3a d Constant output current 1 derating curves as a function of ambient temperature and switching frequency Page 27 84 Installation 5 3 Mounting The unit should be mounted in a vertical position on the wall or on the back plane of a cubicle Follow the requirements for cooling see table 5 2 1 and figure 5 2 1 for dimensions To ensure a Safe installation make sure that the mounting surface is relatively flat Mounting holes can be marked on the wall using the template on the cover of the cardboard shipping package Mounting is done with four screws or bolts depending on the size of the unit see tables 5 3 1 and 5 3 2 and figure 5 3 1 for dimensions Units from 25 Hp to 500 Hp have special lifting eyes which must be used see figures 5 3 2 and 5 3 3 The mounting instructions for units over 50
204. ent of the motor Find the value from the nameplate of the motor The internal motor protection function uses this value as a reference value Supply voltage Set parameter value according to the nominal voltage of the supply Values are pre defined for CX CXL CXS V 3 2 CX CXL CXS V 3 4 CX CXL CXS V 35 and CX V 36 See table 2 4 1 Parameter conceal Defines which parameter groups are available 0 all groups are visible 1 only group 1 is visible Parameter value lock Defines access for changing the parameter values 0 parameter value changes enabled 1 parameter value changes disabled If you have to adjust more of the functions of the Local Remote Control Application see chapter 2 5 to set up parameters of Groups 2 8 Page 2 7 2 5 Special parameters Groups 2 8 2 5 1 Parameter tables Parameter Source A Start Stop logic selection Local Remote Control Application Group 2 Input signal parameters Default Custom Description DIA1 DIA2 Start reverse Reverse Run enable Stop pulse Motor pot UP 0 Start forward 1 Start Stop 2 Start Stop 3 Start pulse 4 Start forward DIA3 function terminal 10 0 Not used 1 Ext fault closing contact 2 External fault opening contaci 3 Run enable 4 Acc dec time selection 5 Reverse if par 2 1 3 6 Jog speed 7 Fault reset 8 Acc dec operation prohibit 9 DC braking command
205. erature on drive goes outside the set supervision limits par 3 19 and 3 20 Rotation direction of the motor shaft is different from the requested one External brake ON OFF control par 3 17 and 3 18 Output active when brake control is ON Starts and stops auxiliary drive 1 Starts and stops auxiliary drive 2 Starts and stops auxilary drive 3 Table 6 5 2 Output signals via DO1 and output relays RO1 and RO2 Output frequency limit 1 supervision function Output frequency limit 2 supervision function 0 No supervision 1 Low limit supervision 2 High limit supervision If the output frequency goes under over the set limit 3 10 3 12 this function generates a warning message via the digital output DO1 or via a relay output RO1 or RO2 depending on the settings of the parameters 3 6 3 8 Output frequency limit 1 supervision value Output frequency limit 2 supervision value The frequency value to be supervised by the parameter 3 9 3 11 See figure 6 5 10 Page 6 22 Pump and fan control Application 3 13 Torque limit supervision function 0 No supervision 1 Low limit supervision 2 High limit supervision If the calculated torque value goes under over the set limit 3 14 this P amp S 10 7 N function generates a warning message via the digital output DO1 or via a relay output RO1 or RO2 depending on the settings of 1 1 i i uDooski9 t 1 l gt
206. erload protection 0 2 1 0 0 No action 5 36 1 Warning 2 Fault 7 15 Underload prot field 10 0 150 0 1 0 50 0 5 36 weakening area load X TamoToR 7 16 Underload protection 5 0 150 0 1 0 10 0 5 36 zero frequency load X TamoToR 7 17 Underload time 2 0 600 0 s 1 0s 20 0s 5 36 Page 5 14 Multi purpose Control Application Group 8 Autorestart parameters Code Parameter Range Step Default Custom Description Page 8 1 Automatic restart 0 10 1 0 0 not in use 5 37 number of tries 8 2 Automatic restart multi 1 6000s 1s 30s 5 37 attempt maximum trial time 8 3 Automatic restart 0 1 1 0 0 Ramp 5 38 start function 1 Flying start 8 4 Automatic restart of 0 1 1 0 0 No 5 38 undervoltage 1 Yes 8 5 Automatic restart of 0 1 1 0 0 No 5 38 overvoltage 1 Yes 8 6 Automatic restart of 0 1 1 0 0 No 5 38 overcurrent 1 Yes 8 7 Automatic restart of 0 1 1 0 0 No 5 38 reference fault 1 Yes 8 8 Automatic restart after 0 1 1 0 0 No 5 38 over undertemperature 1 Yes fault Table 5 5 1 Special parameters Groups 2 8 Page 5 15 Multi purpose Control Application 5 5 2 Description of Groups 2 8 parameters 2 1 Start Stop logic selection 0 OOO DIA1 closed contact start forward DIA2 closed contact start reverse See figure 5 5 1 A FWD Output Stop
207. ernal braking resistor for faster deceleration See figure 4 5 16 DC braking Param 4 10 t lew t param 4 9 Figure 4 5 16 DC braking RUN ute time when par 4 7 17 ae 4 10 Execute frequency of DC brake during ramp Stop See figure 4 5 16 gt Page 4 26 Pl control Application 4 11 DC brake time at start 0 DC brake is not used A gt 0 DC brake is active when t Hz the start command is given is This parameter defines the time before the brake is released After the brake is released the output frequency increases according to the set start function parameter 4 6 and t 5 the acceleration parameters Par 4 111 1 3 4 1 or 4 2 4 3 See AUN ee a figure 4 5 17 STOP UD012K22 Figure 4 5 17 DC braking time at start 4 12 Jog speed reference Parameter value defines the Jog speed selected with the digital input 5 1 5 6 Prohibit frequency area f ouput 4 Low limit High limit Spe In some systems it may be necessary to avoid certain pote he ce ae ey frequencies because of mechani cal resonance problems With these parameters it is oe T possible to set limits for three skip 5 5 5 6 frequency regions The accuracy l Reference Hz of the setting is 0 1 Hz me UD012K33 Figure 4 5 18 Example of prohibit frequency area setting 6 1 Motor control mode 0 Frequency control The I O terminal and panel references are frequency
208. ero frequency Refer to the figure 3 5 32 If parameter 1 13 is adjusted this parameter is automatically restored to its default value 7 17 Underload time This time can be set between 2 0 600 0 s This is the maximum allowed time for an underload state There is an internal up down counter to accumulate the underload time Refer to the figure 3 5 33 If the underload counter value goes above this limit the protection will cause a trip refer to the parameter 7 14 If the drive is stopped the underload counter is reset to zero A Torque A Underload time counter Trip area Par 7 17 Pate 73 tS j a eee eee ees N l l Trip warning 1 Par 7 14 1 1 1 1 i i Par 7a t6 i 1 Underload area UMCH7_17 f Hz 1 aime SH a giage events cr ea a Figure 3 5 32 Setting of minimum load Figure 3 5 33 Counting the underload time Page 3 35 go p N 8 3 8 4 8 5 8 6 Multi step Speed Control Application Automatic restart number of tries Automatic restart trial time The Automatic restart function restarts the drive after the faults selected with parameters 8 4 8 8 The Start function for Automatic restart is selected with parameter 8 3 See figure 3 5 34 A Number of faults during t trial at tial jira Geen i l care 3 Par 8 1 3 1 trial Par 8 2 t gt Three faults Four faults RUN STOR 2 wpe SS aa aa a e ua Se UD012K25
209. ers The default value for the time constant is calculated based on the motorname plate data from parameters 1 12 and 1 13 If either of these parameters is reset then this parameter is set to its default value If the motor s tg time is known given by the motor manufacturer the time constant parameter could be set based on tg time As a rule of thumb the motor thermal time constant in minutes equals to 2xtg tg in seconds is the time a motor can safely operate at six times the rated current If the drive is in the stop stage the time constant is internally increased to three times the set parameter value The cooling in the stop stage is based on convection with an increased time constant Page 5 33 7 9 Multi purpose Control Application Motor thermal protection break point frequency This frequency can be set between 10 500 Hz This is the frequency break point of thermal current curve With frequencies above this point the thermal capacity of the motor is assumed to be constant Refer to the figure 5 5 23 The default value is based on motor s nameplate data parameter 1 11 It is 35 Hz for a 50 Hz motor and 42 Hz for a 60 Hz motor More generally it is 70 of the frequency at the field weakening point parameter 6 3 Changing either parameter 1 11 or 6 3 will restore this parameter to its default value A Motor temperature oe ee 105 j Motor j current I 17 Q st
210. estart start function The parameter defines the start mode 0 Start with ramp 1 Flying start see parameter 4 6 Automatic restart after undervoltage 0 No automatic restart after undervoltage fault 1 Automatic restart after undervoltage fault condition returns to the normal condition DC link voltage returns to the normal level Automatic restart after overvoltage 0 No automatic restart after overvoltage fault 1 Automatic restart after overvoltage fault condition returns to the normal condition DC link voltage returns to the normal level Automatic restart after overcurrent 0 No automatic restart after overcurrent fault 1 Automatic restart after overcurrent faults Automatic restart after reference fault 0 No automatic restart after reference fault 1 Automatic restart after analog current reference signal 4 20 mA returns to the normal level gt 4 mA Automatic restart after over undertemperature fault 0 No automatic restart after temperature fault 1 Automatic restart after heatsink temperature has returned to its normal level between 10 C 75 C Page 2 37 Local Remote Control Application Notes Page 2 38 Multi step Speed Control Application MULTI STEP SPEED CONTROL APPLICATION par 0 1 4 CONTENTS 3 Multi step Speed Control Appl 3 1 3 1 GOner als
211. et with this procedure not with arrow up arrow down buttons Page 3 17 2 6 2 7 Multi step Speed Control Application V Signal inversion V iS source B frequency reference par 1 6 1 default Parameter 2 6 0 no inversion of analog V signal Figure 3 5 5 V no signal inversion Parameter 2 6 1 inversion of analog V signal max V signal minimum set speed min V signal maximum set speed Figure 3 5 6 V signal inversion V Signal filter time Filters out disturbances from the incoming analog Vp signal A long filtering time makes regula tion response slower See figure 3 5 7 Figure 3 5 7 V signal filtering A Output frequency Parameter DAT bsashes sec ee es ne eee ee Wo Parameter 2 3 0 Vin 0 10V Parameter 2 3 1 Parameter I Vin custom 2 16 H ote 1 1 7 In i i term 2 RS _IIm _ gt 0 Param 2 4 Param 2 5 10 V Ch012K46 A Output frequency Par 2 TTko H ea aean eee ee Se eee Param 2 3 0 lv 0 10V Param 2 5 1 Vn custom Pasi 16 po Soe ee eer eee eres y i i terminal 2 i gt 0 Par 2 4 Par 2 5 10V UD012K47 A Unfiltered signal 100 63 t s gt UDOO9K15 Page 3 18 2 8 NN Multi step Speed Control Application Analog input signal range 0 0 20 mA 1 4 20 mA 2 Custom signal span Se
212. etc max 0 1 A I O ground Ground for reference and controls Start forward programmable Contact closed start forward Start reverse Programmable Contact closed start reverse Contact open no action Contact closed fault reset Common for DIA1 DIA3 Connect to GND or 24V Voltage for switches same as 6 Ground for reference and controls ee gener ee Fault reset programmable Control voltage output l I O ground p Jog speed select programmable Contact open no action Contact closed jog speed External fault programmable Contact open no fault Contact closed fault Accel deceler time select programmable Contact open par 1 3 1 4 in use Contact closed par 4 3 4 4 in use Common for DIB4 DIB6 Connect to GND or 24V Analog output Programmable par 3 1 Range 0 20 mA R max 500 Q Output frequency READY Digital output Programmable par 3 6 Open collector l lt 50 mA V lt 48 VDC Relay output 1 RUN Programmable par 3 7 Relay output 2 FAULT Programmable par 3 8 Figure 5 2 1 Default I O configuration and connection example of the Multi purpose Control Application Page 5 2 Multi purpose Control Application 5 3 Control signal logic The logic flow of the I O control signals and pushbutton signals from the panel is s
213. eter value can be changed only when the drive is stopped Page 5 13 Group 7 Protections Multi purpose Control Application Code Parameter Range Step Default Custom Description Page 7 1 Response to 0 2 1 0 0 No action 5 31 reference fault 1 Warning 2 Fault stop according to par 4 7 3 Fault always coasting stop 7 2 Response to 0 2 1 2 0 No action 5 31 external fault 1 Warning 2 Fault stop according to par 4 7 3 Fault always coasting stop 7 3 Phase supervision of 0 2 2 2 0 No action 5 31 the motor 2 Fault 7 4 Ground fault protection 0 2 2 2 0 No action 5 31 2 Fault 7 5 Motor thermal protection 0 2 1 2 0 No action 5 32 1 Warning 2 Fault 7 6 Motor thermal protection 50 0 150 0 1 0 100 0 5 32 break point current X InmoTOR 7 7 Motor thermal protection 5 0 150 0 1 0 45 0 5 33 zero frequency current X InmoTOR 7 8 Motor thermal protection 0 5 300 0 0 5 17 0 Default value is set according 5 33 time constant minutes min min to motor nominal current 7 9 Motor thermal protection 10 500 Hz 1 Hz 35 Hz 5 34 break point frequency 7 10 Stall protection 0 2 1 1 0 No action 5 34 1 Warning 2 Fault 7 11 Stall current limit 5 0 200 0 1 0 130 0 5 35 X InMoTOR 7 12 Stall time 2 0 120 0s 1 0s 15 0s 5 35 7 13 Maximum stall frequency 1 fmax 1Hz 25 Hz 5 35 7 14 Und
214. eter value lock Defines access to the changes of the parameter values 0 Parameter value changes enabled 1 Parameter value changes disabled Page 6 7 Pump and fan control Application 6 5 Special parameters Groups 2 9 6 5 1 Parameter tables Group 2 Input signal parameters Parameter DIA2 function terminal 9 Default Custom Description 0 Not used 1 Ext fault closing contact 2 External fault opening contaci 3 Run enable 4 Acceler deceler time selection 5 Reverse 6 Jog frequency 7 Fault reset 8 Acc dec operation prohibit 9 DC braking command 10 Motor digital potent UP DIA3 function terminal 10 0 Not used 1 Ext fault closing contact 2 External fault opening contact 3 Run enable 4 Acceler deceler time selection 5 Reverse 6 Jog frequency 7 Fault reset 8 Acc dec operation prohibit 9 DC braking command 10 Motor digital potent DOWN 6 17 Vin signal range 0 1 0 0 10 V 1 Custom setting range 6 17 Vin custom setting min 0 00 100 00 0 00 6 17 Vin custom setting max 0 00 100 00 100 00 6 17 Vin signal inversion 0 1 0 0 Not inverted 1 Inverted 6 17 Vin signal filter time 0 00 10 00 s 0 No filtering 6 17 lin signal range 0 2 0 0 20 mA 1 4 20 mA 2 Custom setting range lin custom
215. eters 3 6 3 8 The supervised reference is the current active reference It can be source A or B reference depending on DIB6 input or panel reference if panel is the active control source Reference limit supervision value The frequency value to be supervised by the parameter 3 15 Page 2 24 Local Remote Control Application 3 17 External brake off delay 3 18 External brake on delay The function of the external brake can be delayed from the start and stop control signals with these parameters See figure 2 5 21 a tore Par 3 17 ton Par 3 18 External i BRAKE OFF 1 Digital or ON i i relay output i DIA1 RUN FWD STOP DIA2 RUN REV STOP t p UD012K45 b torp Par 3 17 ton Par 3 18 Bag haa External BRAKE OFF Digital or ON relay output l DIA1 START PULSE i DIA2 STOP PULSE t gt Figure 2 5 21 Ext brake control a Start Stop logic selection par 2 1 0 1 or 2 b Start Stop logic selection par 2 1 3 The brake control signal can be programmed via the digital output DO1 or via one of the relay outputs RO1 and RO2 see parameters 3 6 3 8 3 19 Drive temperature limit supervision 0 No supervision 1 Low limit supervision 2 High limit supervision If temperature of the unit goes under over the set limit par 3 20 this function generates a warning message via the digital output DO1 and via a relay output RO1 or RO2 depending on the
216. evel select parameter 2 4 press the Enter button Maximum setting Set the V signal to its maximun level select parameter 2 5 press the Enter button The parameter values can only be set with this procedure not with arrow up arrow down buttons Page 2 17 Local Remote Control Application 2 6 V Signal inversion A V is source B frequency Peut y reference par 1 6 1 default Parameter 2 6 0 no inversion eden ate e ce inten eee aoe of analog Vin signal Parameter 2 3 0 Vin 0 10V Parameter 2 3 1 Parameter ______ Vin custom 2 16 i vi 1 In i term 2 p m Figure 2 5 5 V no signal inversion 0 Param 2 4 Param 2 5 10 V Ch012K46 Parameter 2 6 1 inversion of analog V signal A F vg Output max V signal minimum set speed frequency min V signal maximum set speed Pati2ed Re HO ae See ee ees 1 Param 2 3 0 Param 2 5 1 V custom pap opas RS Saar Sa Sees aa v i terminal 2 gt 0 Par 2 4 Par 2 5 10 V UD012K47 Figure 2 5 6 V signal inversion 2 7 V signal filter time 4 Filters out disturbances from the i incoming analog V signal Unfiitergd signal A long filtering time makes 100 regulation response slower See figure 2 5 7 Filtered signal EAE f E E EE t s 7 gt P ae Par 2 7 Figure 2 5 7 V signal filtering lt gt UD009K15 Page 2
217. filtering Page 1 14 Standard Application Analog output function o See table Group 3 output and a supervision parameters on the re a signal page 1 8 100 4 Analog output filter time 63 Filters the analog output signal See figure 1 5 8 t s gt Figure 1 5 8 Analog output filtering Par 3 2 UD009K16 Analog output invert Inverts analog output signal A max output signal minimum set Analog value urent min output signal maximum set Be tc EEE EAE E ia Sym value SN amA i param 3 5 10m 4 7 TR Ne R i i i Param 3 5 nT tes EEA A A EREET E Si 100 i sonal mac ai Figure 1 5 9 Analog output invert uae 0 5 1 0 eee Analog output minimum Defines the signal minimum to be either 0 mA or 4 mA See figure 1 5 10 Analog output scale Scaling factor for analog output t A See figure 1 5 10 Analog current Param 3 5 Param 3 5 200 100 20 MASS ES SSS SSeS ee E a Signal Max value of the signal A Output Max frequency p 1 2 frequency Motor speed Max speed N Xfina f 1OMA PES Se Soe fon 8 eae t Param 3 5 Output 2 x lacx ETE EE A E E Saa current Motor torque 2x Thmot Par 3 4 1 0 Motor power 2 x Pinot AmA 7 Motor voltage 100 x ViaMot Mag value of signal n3 4 ele ram 3 1 DC link volt 1000 V Para E i Sered Dy lan 0 0 5 1 0 Ch012K18 Figure 1 5 10 Analog output scale P
218. fter the stop command the motor will coast to a stop with the CX CXL CXS off With DC injection the motor can be electrically stopped in the shortest possible time without using an optional external braking resistor The braking time is scaled according to the frequency when the DC braking starts If the frequency is gt nominal frequency of the motor par 1 11 setting value of parameter 4 9 determines the braking time When the frequency is lt 10 of the nominal the braking time is 10 of the set value of parameter 4 9 Hz Ael fout Output frequency 0 1x f n Motor speed DC braking ON t 0 1 x par 4 9 t 1x par 4 9 gt Se m Figure 5 5 18 DC braking time when stop coasting Stop function 1 ramp After the Stop command the speed of the motor is reduced based on the deceleration parameter ramp parameter if no regeneration occurs due to load inertia to a speed defined with parameter 4 10 where the DC braking starts A fout Hz UD009K21 The braking time is defined with parameter 4 9 Motor speed Output frequency If high inertia exists it is recommended to use an external braking resistor for faster deceleration See figure 5 5 19 DC braking t Figure 5 5 19 DC braking time when stop function ramp 1 1 I if 1 1 1 Ni i i i Param 4 10 RE aE i i 1 1 gt t param
219. g 2 Trip function Tripping and warning will give a display indication with the same message code If tripping is selected the drive will stop and activate the fault stage Deactivating the protection by setting this parameter to 0 will reset the thermal stage of the motor to 0 Motor thermal protection break point current This current can be set between 50 0 150 0 x Iie This parameter sets the value for thermal current at frequencies above the break point on the thermal current curve Refer to the figure 2 5 28 The value is set as a percentage of the motor nameplate nominal current parameter 1 13 not the drive s nominal output current The motor s nominal current is the current which the motor can withstand in direct online use without being overheated If parameter 1 13 is adjusted this parameter is automatically restored to the default value Setting this parameter or parameter 1 13 does not affect A the maximum output current of the current drive Parameter 1 7 alone limit 7 determines the maximum output current of the drive Overload area Par 7 6 4 IT Par 7 7 f Hz Figure 2 5 28 Motor thermal se a current I curve Motor thermal protection zero frequency current This current can be set between 10 0 150 0 xX Inmotor This parameter sets the value for thermal current at zero frequency Refer to the figure 2 5 28 The default value is set assuming that ther
220. g 9 Reversed 10 Jog speed selected 11 At speed 12 Motor regulator activated 13 Output frequency limit superv 1 14 Output frequency limit superv 2 15 Torque limit supervision 16 Reference limit supervision 17 External brake control 18 Control from I O terminals 19 Drive temperature limit supervision 20 Unrequested rotation direction 21 External brake control inverted Note Parameter value can be changed only when the drive is stopped Page 2 9 Local Remote Control Application Code Parameter Range Step Default Custom Description Page 3 7 Relay output 1 mer 0 21 1 2 As parameter 3 6 2 23 3 8 Relay output 2 o O 0 21 1 3 As parameter 3 6 2 23 3 9 Output freq limit 1 0 2 1 0 0 No 2 24 supervision function 1 Low limit 2 High limit 3 10 Output freq limit 1 0 0 fmax 0 1 Hz 0 0 Hz 2 24 supervision value par 1 2 3 11 Output freq limit 2 0 2 1 0 0 No 2 24 supervision function 1 Low limit 2 High limit 3 12 Output freq limit 2 0 0 fmax 0 1 Hz 0 0 Hz 2 24 supervision value par 1 2 3 13 Torque limit 0 2 1 0 0 No 2 24 supervision function 1 Low limit 2 High limit 3 14 Torque limit 0 0 200 0 0 1 100 0 2 24 supervision value x Tasva 3 15 Active reference limit 0 2 1 0 0 No 2 24 supervision 1 Low limit 2
221. g from 10 V reference voltage F21 24 V supply 24 V supply shorted on control board or option board Check the cabling from 24 V reference voltage F22 EEPROM check F23 sum fault Parameter restoring error interference fault component failure When the fault is reset the fre quency drive will automatically load parameter default settings Check all parameter settings after reset If the fault occurs again contact your Honeywell affiliate F25 Microprocessor watchdog interference fault component failure Reset the fault and restart If the fault occurs again contact your Honeywell affiliate F26 Panel communica The connection between panel and the frequency Check the panel cable tion error converter is not working F29 Thermistor protec Thermistor input of the I O expander board has de Check motor cooling and tion tected increase of the motor temperature loading Check thermistor connection If thermistor input of the I O expander board is not in use it has to be short circuited F36 Analog input lin lt 4mA signal range selected 4 20 mA The current in the analog input lin is below 4 mA signal source has failed control cable is broken Check the current loop circuitry F41 External fault Fault is detected in external fault digital input Check the external fault circuit or device Table 7 3 Fault codes Page 64 84 Control panel
222. gic PARAMETERS r 1 5 Reference select j 1 6 Jogging speed 1 17 Multi step speed 1 1 18 Multi step speed 2 j 1 19 Multi step speed 3 j 1 20 Multi step speed 4 21 Multi step speed 5 j 22 Multi step speed 6 23 Multi step speed 7 PROGRAMMABLE PUSH BUTTON 2 Internal frequency Ext analogue reference i reference Q Basic speed reference Multi step speed selection 1 Internal fault reset Jogging speed reference selection programmable input Internal Fault reset programmable input Start Stop Start forward Programmable f Internal Start Stop and reverse Start reverse Reverse signal logic control line _ signalline UD012K03 Figure 3 3 1 Control signal logic of the Multi step Speed Control Application Switch positions shown are based on the factory settings Page 3 3 Multi step Speed Control Application 3 4 Basic parameters Group 1 Parameter Minimum frequency O fmax Default Custom Description Maximum frequency fmin 120 500Hz Acceleration time 1 0 1 3000 0 s Time from fmin 1 1 to fmax 1 2 Deceleration time 1 0 1 3000 0 s Time from fmax 1 2 to fmin 1 1 Basic reference selection 0 1 0 Analog voltage input term 2 1 Analog current input term 4 Jog speed reference fmin fmax 1 1 1 2 5 0 Hz
223. gt lt 4 Fmin 9y j aN par 1 1 N hystereesi 2 0 2 V 1 Fmax i Fmax SPREE SERA s CRSP S T par 1 2 SD RMSE RS RSE SSS 56 o par 2 y y If minimum frequency par 1 1 gt 0 If minimum frequency par 1 1 0 hysteresis is 2 at reversing point there is no hysteresis at reversing point Fig 5 4 1 Joystick control Vin signal 10 V 10 V 8 Reference value is changed with digital input signals DIA4 and DIA5 switch in DIA3 closed frequency reference increases switch in DIA4 closed frequency reference decreases Speed of the reference change can be set with the parameter 2 20 9 Same as setting 8 but the reference value is set to the minimum frequency par 1 1 each time the SV9000 is stopped When the value of parameter 1 5 is set to 8 or 9 the value of parameters 2 4 and 2 5 are automatically set to 11 Jog speed reference Parameter value defines the jog speed selected with the digital input Current limit This parameter determines the maximum motor current that the CX CXL CXS will provide short term V Hz ratio selection Linear The voltage of the motor changes linearly with the frequency in the 0 constant flux area from 0 Hz to the field weakening point par 6 3 where a constant voltage nominal value is also supplied to the motor See figure 5 4 2 A linear V Hz ratio should be used in constant torque applications This default setting should be used if there is no special requ
224. has to be changed if other than the default supply voltage of the drive is used Contact your Honeywell distributor if more information is needed Voltage Code Default Supply Voltage 2 230V 380V 480V 600V Page 37 84 Wiring 6 1 4 1 Cable selection and installation for the UL listing For the installation and cable connections the In addition to the connecting information the following must be noted Use only with cop tightening torques of the terminals are defined per wire temperature rating of at least 140 in the table 6 1 4 1 2 167 F Units are suitable for use on a circuit capable of delivering not more than the fault RMS sym metrical amperes mentioned in the table 6 1 4 1 1 480V maximum FRAME Voltage Maximum RMS symmetrical amperes on connecting circuitry M4 M5 5 000 M6 M7 380 480 10 000 M8 M9 18 000 Table 6 1 4 1 1 Maximum symmetrical supply current Tightening rrawe pew voteae ae ine wa Pw _ 130 80 730 380 480 The isolated standoff of the busbar does not withstand the listed tightening torque Use a wrench to apply counter torque when tightening Table 6 1 4 1 2 Tightening torque Page 38 84 Stripping Lengths in All 230 380 480 0 47 2 2 2210 47 All 230 380 480 0 24 71 4 24 a 230 380 480 1 g Al 28073807 480 60 ada Ns L3 L2 gt Sanduetor way 15 30 185 22 25 30 3
225. he number of auxiliary drives in use is defined The signals to control the auxiliary drives on and off can be programmed to the relay outputs or to the digital output with parameters 3 6 3 8 The default setting is one auxiliary drive in use pre programmed to relay output RO1 Start frequency of auxiliary drive 1 Start frequency of auxiliary drive 2 Start frequency of auxiliary drive 3 The frequency of the CX CXL CXS must exceed by 1 Hz the limit defined with these parameters before the auxiliary drive is started The 1 Hz provides hysteresis to avoid unnecessary starts and stops See figure 6 5 25 Stop frequency of auxiliary drive 1 Stop frequency of auxiliary drive 2 Stop frequency of auxiliary drive 3 The frequency of the CX CXL CXS must fall 1Hz below the limit defined with these parameters before the auxiliary drive is stopped The stop frequency limit also defines the frequency the drive drops to after starting the auxiliary drive See figure 6 5 25 Start delay of auxiliary drives Starting of the auxiliary drives is delayed based on the time setting of parameter 9 10 This prevents unnecessary starts which could be caused by a flow reference request which is momentarily above the previous reference level See figure 6 5 25 Stop delay of auxiliary drives Stopping of the auxiliary drives is delayed based on the time setting of parameter 9 10 This prevents unnecessary stops which could be caused by a flow reference reque
226. here is no external fan cooling the motor If an external fan is used this parameter can be set to 90 or higher The value is set as a percentage of the motor s nameplate nominal current parameter 1 13 not the drive s nominal output current The motor s nominal current is the current which the motor can stand in direct on line use without being overheated Page 6 30 7 8 7 9 Pump and fan control Application A Current limit par 1 7 Overload area Par 7 6 IT Par 7 7 f Hz gt Figure 6 5 18 Motor thermal current T Par 7 9 UMCH7_91 l curve If you change parameter 1 13 this parameter is automatically restored to the default value Setting this parameter or parameter 1 13 does not affect to the maximum output current of the drive Parameter 1 7 alone determines the maximum output current of the drive Motor thermal protection time constant The time can be set between 0 5 300 minutes This is the thermal time constant of the motor The larger the motor the greater the time constant The time constant is defined as the time it takes the calculated thermal stage to reach 63 of its final value The motor thermal time is specific to a motor design and it varies between different motor manufacturers The default value for the time constant is calculated based on the motor nameplate data from parameters 1 12 and 1 13 If either of these parameters is reset then
227. hile the drive is stopped Acceleration time1 deceleration time 1 These limits correspond to the time required for the output frequency to accelerate from the set minimum frequency par 1 1 to the set maximum frequency par 1 2 Acceleration deceleration times can be reduced with a free analog input signal see parameters 2 18 and 2 19 Source A reference signal 0 Analog voltage reference from terminals 2 3 e g a potentiometer 1 Analog current reference trom terminals 4 5 e g a transducer 2 Panel reference is the reference set from the Reference Page REF see chapter 7 5 in the User s Manual 3 The reference value is controlled by digital input signals DIA2 and DIAS switch in DIA2 closed frequency reference increases switch in DIA3 closed frequency reference decreases The speed range for the reference change can be set with the parameter 2 3 4 Same as setting 3 but the reference value is set to the minimum frequency par 2 14 or par 1 1 if par 2 15 0 each time the drive is stopped When the value of parameter 1 5 is set to 3 or 4 parameter 2 1 is automatically set to 4 and parameter 2 2 is automatically set to 10 Source B reference signal See the values of the parameter 1 5 Current limit This parameter determines the maximum motor current that the CX CXL CXS will provide short term Current limit can be set lower with a free analog input signal See parameters 2 18 and 2 19 V Hz rat
228. hours not resettable v12 MW hours MWh MW hours can be reset with programmable trip counter button 4 v13 Voltage analog input V Voltage at the terminal Vin term 2 v14 Current analog input mA Current at terminals lin and lin term 4 5 v15 Digital input status gr A v16 Digital input status gr B v 17 Digital and relay output status v18 Control program Version number of the control software v19 Unit nominal power Hp Shows the horsepower size of the unit v20 Pl controller reference Percent of the maximum reference v21 Pl controller actual value Percent of the maximum actual value v22 Pl controller error value Percent of the maximum error value v23 Pl controller output Hz v24 Motor temperature rise 100 temperature of motor has risen to nominal Table 4 7 1 Monitored items 1 DD full days dd decimal part of a day 2 HH full hours hh decimal part of an hour Page 4 36 Pl control Application Notes Page 4 37 Pl control Application Notes Page 4 38 Multi purpose Control Application MULTI PURPOSE CONTROL APPLICATION par 0 1 6 CONTENTS 5 Multi purpose Control Application 5 1 Bal General osx access teeptanjateardecatidena tects 5 2 52 Control VO siscticitecancen ees 5 2 5 3 Control signal logic c
229. hown in figure 5 3 1 1 5 Reference selection 1 6 Jogging speed ref PROGRAMMABLE PUSH BUTTON 2 Joystick control l Internal l frequency meee i reference Multi step Joystick control l or this Uin lin l function in tin in Uin Uin x lin rogrammable i Internal P i Start Stop DIA1 Start FWD Programm Internal C Start Stop i reverse DIA2 Start REV and Reverse gt Internal signal logic fault reset DS Fault reset programmable External fault programmable DIB5 DIB6 Accel deceler time select programmable controlline Signal line UD012K05 Figure 5 3 1 Control signal logic of the Multipurpose Control Application Switch positions shown are based on the factory settings Page 5 3 Multi purpose Control Application 5 4 Basic parameters Group 1 5 4 1 Parameter table Parameter Range Default Custom Description Minimum frequency 0 fmax 0 Hz Maximum frequency fmin 120 500Hz 60 Hz Acceleration time 1 0 1 3000 0 s 3 0s Time from fmin 1 1 to fmax 1 2 Deceleration time 1 0 1 3000 0 s 3 0s Time from fmax 1 2 to fmin 1 1 Reference selection 0 9 0 Vi Vin lin 0 1 2 in 3 Ti lin 4 lin j Vin Vin lin 5 Vin lin 6 Vin joystick control 7 lin joystick control 8 Signal from interna
230. ic restart Parameter 8 1 determines how many automatic restarts can be made during the trial time set by the parameter 8 2 The count time starts from the first autorestart If the number of restarts does not exceed the value of the parameter 8 1 during the trial time the count is cleared after the trial time has elapsed The next fault starts the counting again Page 1 23 Standard Application 8 3 Automatic restart start function The parameter defines the start mode 0 Start with ramp 1 Flying start see parameter 4 6 Notes Page 1 24 Local Remote Control Application LOCAL REMOTE CONTROL APPLICATION par 0 1 3 CONTENTS 2 Local Remote Control Application 2 1 2 1 2 2 2 3 2 4 2 5 Gen ral erii nrnna Control O eene Control signal logic ee Parameters Group 1 esssssseessen 2 4 1 Parameter table 2 4 2 Description of Group1 par 2 5 Special parameters Groups 2 8 2 8 2 5 1 Parameter tables 2 8 2 5 2 Description of Group 2 par 2 15 Page 2 1 Local Remote Control Application 2 1 General By utilizing the Local Remote Control value of parameter 0 1 to 3 Application the use of two different control and frequency reference sources is programmable The active control source is selected with digital input DIB6 Basic connections of inputs and outputs
231. icient torque to start and run at low frequencies The boost voltage increase depends on the motor type and horsepower Automatic torque boost can be used in applications where starting torque due to starting friction is high e g in conveyors NOTE In high torque low speed applications it is likely the motor will overheat vax If the motor has to run prolonged time under these conditions special attention must be paid to cooling the motor Use external cooling for the motor if the temperature rise is too high Nominal voltage of the motor Find this value V from the nameplate of the motor This parameter sets the voltage at the field weakening point parameter 6 4 to 100 x V Nominal frequency of the motor nmotor Find the nominal frequency f from the nameplate of the motor This parameter sets the frequency of the field weakening point parameter 6 3 to the same value Nominal speed of the motor Find this value n from the nameplate of the motor Nominal current of the motor Find the value from the nameplate of the motor The internal motor protection function uses this value as a reference value Supply voltage Set parameter value according to the nominal voltage of the supply Values are pre defined for CX CXL CXS V 3 2 CX CXL CXS V 3 4 CX CXL CXS V 35 and CX V 36 See table 5 4 1 Parameter conceal Defines which parameter groups are available 0 all parameter groups are visible 1 only group
232. ignals for driving the IGBT inverter bridge The Control Panel is a link between the user and the drive With the panel the user can set parameter values read status data and give control commands The panel is removable and can be mounted externally and connected via a cable to the drive The Control I O block is isolated from line potential and is connected to ground via a 1 MQ resistor and 4 7 nF capacitor If needed the Control I O block can be grounded without a resistor by changing the position of the jumper X4 GND ON OFF on the control board The basic Control interface and parameters Basic application make the inverter easy to operate If a more versatile interface or parameter settings are needed an optional application can be selected with one parameter from a Application package The application package manual describes these in more detail An optional Brake Chopper can be mounted in the unit at the factory Optional I O expander boards are also available Input and Output EMC filters are not required for the functionality of the drive they are only required for compliance with the EU EMC directive Brake resistor if optional brake chopper is installed Input EMC filter Control Panel Dr 1 Rectifier Chopper Loh Optional Brake Output EMC filter Motor and Applicatio Contro C23 A Galvanic Isolator CXL CXS
233. ilter optional tay L1 L2 L3 Figure 6 1 General wiring diagram open protected chassis units frame sizes M4 M6 Page 30 84 Wiring 0 4 20mA Reference 1 10 Vref RL lt 500Q voltage ri 18 WP Vin lout 19 P eno 7 i Reference Bilin Q DO1 V ay current 5 lin a yg tin 1 lt 50mA J6 24Vout RO1 1 21 7 GND 1 2122 8 DIA1 Rota P acide 49 DIA2 RO2 1 Switching 110 DIA3 S s lt 8A 24Vdc 11 cma 2 2 255 lt 0 4A 300Vdc PT RO2 3 26 lt 2kVA 250Vac i 24Vout Continuously 13 GND lt 2Arms 14 DIB4 1 Brake 15 DIB5 Chopper 16 DIB6 Optional 24V gt GND gt x x dotted line indicates the connection with inverted signal levels Brake Resistor f Optional 1 RFI filter optional 1 ei L2 L3 Figure 6 2 General wiring diagram open protected chassis frame size M7 and NEMA 1 12 units frame size gt M8 Page 31 84 Wiring a P Ta 0 4 20mA eference hk 10 Vref voltage ta a j ise roe ae vin lout i i 3 GND r e 7 va Reference F p4 lin 4g DOT T 7 current i is a V lt 48V a lt lt lin 1 lt 50mA gs 24Vout RO1 1 21 to 17 GND 1 2 122 k RL 8 DIA1 _R01 3 2 _ac de L9 DIA2 ae i Switching b10 DIA3 RO2N 24 lt 8A 24Vdc
234. imes are possible by using an external or internal braking chopper with an external brake resistor The internal braking chopper is assembled in the factory available in certain models It has the same continuous current specification as the unit itself Select the correct brake resistor to get the desired braking effect More information can be found in the separate brake manual 13 3 I O expander board The available I O can be increased by using the I O expander boards I O expander boards can be installed in the option board position inside the open protected NEMA 1 and NEMA 12 models For the Compact NEMA 1 model the board needs to be installed in a separate O expander box More information can be found in the I O expander board manuals 13 4 Communication CX CXL CXS frequency converters can be connected to DeviceNet Modbus RTU Interbus S Profibus DP and Lonworks systems by using the fieldbus option board The fieldbus board can be installed in the option board position inside the open protected NEMA 1 and NEMA 12 models For the compact NEMA 1 model the board needs to be installed in a separate I O expander box More information can be found in the separate communication manuals 13 6 Graphics control panel The Graphics control panel can be used inplace of the standard 3 line LCD panel It provides parameters monitored items etc in text format 3 monitored items at the same time in displa
235. imit 3 20 this function generates a warning message via the digital output DO1 or via a relay output RO1 or RO2 depending on the settings of parameters 3 6 3 8 3 20 Drive temperature limit value The temperature value to be supervised by parameter 3 19 Page 6 23 Pump and fan control Application a torr Par 3 17 toy Par 3 18 ame External i BRAKE OFF i 1 Digital or ON relay output DIA1 RUN FWD STOP DIA2 RUN REV STOP t Pe UD012K45 b torr Par 3 17 ton Par 3 18 External BRAKE OFF T Digital or ON relay output 1 DIA1 START PULSE DIA2 STOP PULSE t SH Figure 6 5 11 External brake control a Start Stop logic selection par 2 1 0 1 or 2 b Start Stop logic selection par 2 1 3 Acc Dec ramp 1 shape Acc Dec ramp 2 shape The acceleration and deceleration ramp shape can be programmed with these parameters Setting the value 0 gives you a linear ramp shape The output frequency immediately follows the input with a ramp time set by parameters 1 3 1 4 4 3 4 4 for Acc Dec time 2 Bs N Hz Setting 0 1 10 seconds for 4 1 4 2 causes an S shaped ramp The speed changes are smooth Parameter 1 3 1 4 4 3 4 4 determines the ramp time of the acceleration deceleration in the middle of the curve See figure See figure 6 5 12 4 2 t gt UDO09K20 Figure 6 5 12 S shaped accelera
236. imum scaling 320 00 320 00 0 01 100 00 100 no maximum scaling lin minimum scaling 320 00 320 00 0 01 0 00 0 no minimum scaling lin maximum scaling 320 00 320 00 0 01 100 00 100 no maximum scaling Free analog input signal selection 0 2 ot use in analog voltage input in analog current input Free analog input function No function 1 Reduces current limit par 1 7 2 Reduces DC braking current 3 Reduces acc and decel times 4 Reduces torque supervis limit Motorized digital potentiometer ramp time 0 1 2000 0 Hz s Group 3 Output and supervision parameters 5 22 Code Parameter Range Step Default Custom Description Page 3 1 Analog output function 0 7 1 1 0 Not used Scale 100 5 23 1 O P frequency O fmax 2 Motor speed 0 max speed 3 O P current 0 2 0 x Incx 4 Motor torque 0 2 x Tnmot 5 Motor power 0 2 x Pamot 6 Motor voltage 0 100 x Vnmot 7 DC link volt 0 1000 V 3 2 Analog output filter time 0 00 10 00s 0 01 s 1 00s 5 23 3 3 Analog output inversion 0 1 1 0 0 Not inverted 5 23 1 Inverted 3 4 Analog output minimum 0 1 1 0 0 0mA 5 23 1 4mA 3 5 Analog output scale 10 1000 1 100 5 23 Note Parameter value can be changed only when the drive is stopped Page 5 1
237. ing days not resettable V10 Operating hours trip HH hh Operating hours can be reset with programmable counter button 3 V11 MW hours counter MWh Total MWh not resettable V12 MW hours trip counter MWh Resettable with programmable button 4 V13 Voltage analog input V Voltage of terminal Uin term 2 V14 Current analog input mA Current of terminals lin and lin term 4 5 V15 Digital input status gr A See Figure 7 6 V16 Digital input status gr B See Figure 7 6 V17 Digital and relay output See Figure 7 6 status V18 Control program Version number of the control software V19 Unit nominal power kW The rated power size of the unit V20 Motor temperature rise 100 nominal motor temperature has been reached Table 7 1 Monitored signals DD full days dd decimal part of day HH full hours hh decimal part of hour Page 58 84 Control panel Digital input status indication 0 open input V15 1 closed input active Di g i n put A Stat Example Input Terminal DIAI 8 0 1 1 closed DIA2 9 A closed DIA3 10 open Figure 7 4 Digital inputs Group A status V16 n n Example Di g l n put B Stat Input Terminal DIB4 14 1 0 1 closed DIB5 15 open DIB6 16 closed Figure 7 5 Digital inputs Group B status V17 Dig amp Rel Output ea Terminal Digital output 20 00 1 closed sinking cu
238. io selection Linear The voltage of the motor changes linearly with the frequency in the constant flux area from 0 Hz to the field weakening point 0 par 6 3 where a constant voltage nominal value is supplied to the motor See figure 2 4 1 A linear V Hz ratio should be used in constant torque applications This default setting should be used if there is no special requirement for another setting Page 2 5 Local Remote Control Application Squared The voltage of the motor changes following a squared curve form with the frequency in the area from 0 Hz to the field weakening 1 point par 6 3 where the nominal maximum voltage is supplied to the motor See figure 2 4 1 The motor runs undermagnetized below the field weakening point and produces less torque and electromechanical noise A squared V Hz ratio can be used in applications where the torque demand of the load is proportional to the square of the speed e g in centrifugal fans and pumps Va Default Nominal voltage of the moto Field weakening point Linear Default Nominal frequency of the Squared motor Jf Hz Figure 2 4 1 Linear and squared V Hz curves Programm The V Hz curve can be programmed with three different points V Hz curve The parameters for programming are explained in chapter 2 5 2 2 Programmable V Hz curve can be used if the standard settings do not satisfy the needs of the application See figur
239. ion Coasting 0 The motor coasts to an uncontrolled stop with the frequency converter off after the Stop command is issued Ramp 1 After the Stop command is issued the speed of the motor is decelerated based on the deceleration ramp time parameter If the regenerated energy is high it may be necessary to use an external braking resistor for faster deceleration 4 8 DC braking current Defines the current injected into the motor during DC braking 4 9 DC braking time at stop Determines whether DC braking is ON or OFF It also determines the braking duration time of the DC brake when the motor is stopping The function of the DC brake depends on the stop function parameter 4 7 See figure 1 5 13 0 DC brake is not used gt 0 DC brake is in use depending on the setup of the stop function param 4 7 The time is set by the value of parameter 4 9 Stop function 0 coasting After the stop command the motor will coast to a stop with the frequency converter off With DC injection the motor can be electrically stopped in the shortest possible time without using an optional external braking resistor The braking time is scaled according to the frequency when the DC braking starts If the frequency is gt nominal frequency of the motor par 1 11 the value of parameter 4 9 determines the braking time When the frequency is lt 10 of the nominal the braking time is 10 of the set value of parameter 4 9 See figure 1
240. ion Contact closed fault reset Common for DIB4 DIB6 Connect to GND or 24V Analog output 0 20 mA Output frequency 0 maximum frequency par 1 2 R max 500 Q Digital output READY activated the CX CXL CXS is ready to operate Relay output 1 RUN _ Relay activated CX CXL CXS is operating motor is running Relay output 2 bey FAULT Figure 1 2 1 Control connection example ees Relay activated fault trip has occured Page 73 84 Basic Application 10 3 Control Signal Logic Figure 10 3 1 shows the logic of the I O control signals and push buttons BASIC PARAMETERS RUN READY FAULT e 338 1 5 Multi step speed reference 1 Mou pn ner ems Group 1 1 6 Multi step speed reference 2 1 17 Basic reference selection Panel reference PROGRAMMABLE Start Stop buttons PUSH BUTTON 2 RST button Prog button 1 Internal frequency reference Internal Start Stop Start forward Start Stop and reverse Internal logic reverse Start reverse Reverse J _ gt Internal fault reset Fault reset input External fault input control line signalline UD012K00 UD012K00 Figure 10 3 1 Control signal logic If Start forward and Start reverse are both activated when the utility line is connected to the CX CXL CXS then Start forward will be selected
241. ions Catalog Constant Torque Variable Torque ee a X xHxD ue inches xov 2 r7 fs fo oxov ar a a fT et Jae CX0040HP v32 5 16 CX 0050HP V 3 2 M CX0075HP V 32 e ea M5 Protected 6 2 x 15 9 x 9 4 CX0100HP V32 Eee Fee CXOTSOHPV32 15 43 20 57 CX 0200HP V32 GX0250HP V 32 M6 Protected 8 7 x 20 7 x 11 4 77 2 rCX0500HP V32 50 139 60 165 M7 Chassis 9 8x31 5x 12 4 135 lct continuous rated input and output current constant torque load max 50C ambient MM continuous rated input and output current variable torque load max 40C ambient Protected Enclosure with Option Page 20 84 Technical Data 200 240 Vac 10 15 50 60 Hz Catalog Constant Torque Number CXL 0500HP V 32 CXL 0600HP v 32 6o 165 CXL 0750HP V 32 75 200 3 5 Hp 7 5 20 25 30 40 50 7 5 200 240 Vac 10 15 50 60 Hz 3 Input Catalog Constant Torque Rated Horsepower and output current Variable Torque 10 1 2 3 4 5 7 8 _ l alo Rated Horsepower and output curren Variable Torque 3 Input Series CXL NEMA 12 Dimensions WxHxD inches M4 NEMA 12 4 7 x 15 4x 8 5 17 6 pa 4 M5 NEMA 12 6 2x 20 3x9 4 35 3 M6 NEMA 12 8 7 x 25 6 x 11 4 113 139 M7 NEMA 12 M8 NEMA 12 19 5 x 50 8 x 14 264 Frame Size Enclosure Style oO 84 Era EN w o 14 7 x 39 4 x 13
242. irement for another setting Page 5 6 Squared 1 Multi purpose Control Application The voltage of the motor changes following a squared curve form with the frequency in the area from 0 Hz to the field weakening point par 6 3 where the nominal voltage is also supplied to the motor See figure 5 4 2 The motor runs undermagnetized below the field weakening point and produces less torque and electromechanical noise A squared V Hz ratio can be used in applications where the torque demand of the load is proportional to the square of the speed e g in centrifugal fans and pumps Default Nominal voltage of Field weakening point the motor Linear Default Nominal frequency of the Squared gt motor Hz Figure 5 4 2 Linear and squared V Hz curves Programm The V Hz curve can be programmed with three different points V Hz curve The parameters for programming are explained in chapter 1 5 2 2 A programmable V Hz curve can be used if the standard settings do not satisfy the needs of the application See figure 5 4 3 U V Parameter 6 4 Parameter 6 6 Default 10 Parameter 6 7 Default 1 3 Parameter 6 5 Parameter 6 3 f Hz Default 5 Hz Figure 5 4 3 Programmable V Hz curve Page 5 7 1 9 Multi purpose Control Application V Hz optimization Automatic The voltage to the motor changes automatically which makes the torque motor produce suff
243. is parameter defines the middle point voltage of motor nominal voltage of the curve See figure 6 5 17 Output voltage at zero frequency If the programmable V Hz curve has been selected with parameter 1 8 this parameter defines the zero frequency voltage of the curve See figure 6 5 17 U V Parameter 6 4 Parameter 6 6 Default 10 Parameter 6 7 Default 1 3 Parameter 6 5 Parameter 6 3 f Hz Default 5 Hz Figure 6 5 17 Programmable V Hz curve Overvoltage controller Undervoltage controller These parameters allow the over undervoltage controllers to be switched ON or OFF This may be useful in cases where the utility supply voltage varies more than 15 10 and the application requires a constant speed If the controllers are ON they will change the motor speed in over undervoltage cases Overvoltage faster undervoltage slower Over undervoltage trips may occur when controllers are not used Page 6 28 7 1 7 2 7 3 7 4 Pump and fan control Application Response to the reference fault 0 No response 1 Warning 2 Fault stop mode after fault according to parameter 4 7 3 Fault always coasting stop mode after fault A warning or a fault action and message is generated if 4 20 mA reference signal is used and the signal falls below 4 mA The information can also be programmed via digital output DO1 and via relay outputs RO1 and RO2 Response to external fault 0
244. is is true especially at low frequencies With low frequencies the cooling effect of the motor fan is reduced and the capacity of the motor is reduced If the motor is equipped with an external fan the load derating on low speed is small Motor thermal protection is based on a calculated model and it uses the output current of the drive to determine the load on the motor When the power is turned on to the drive the calculated model uses the heatsink temperature to determine the initial thermal stage for the motor The calculated model assumes that the ambient temperature of the motor is 40 C Motor thermal protection can be adjusted by setting several parameters The thermal current ly specifies the load current above which the motor is overloaded This current limit is a function of the output frequency The curve for Iy is set with Page 4 29 Pl control Application parameters 7 6 7 7 and 7 9 refer to the figure 4 5 20 The default values of these parameters are set from the motor nameplate data With the output current at ly the thermal stage will reach the nominal value 100 The thermal stage changes by the square of the current With output current at 75 from ly the thermal stage will reach 56 value and with output current at 120 from ly the thermal stage would reach 144 value The function will trip the drive refer par 7 5 if the thermal stage will reach a value of 105 The response time of the thermal stage is
245. ke chopper su brake resistor not installed Check brake resistor pervision brake resistor broken If resistor is OK the chopper is brake chopper broken broken Contact your Honeywell affiliate F13 Drive undertem perature Temperature of heat sink below 10 C Table 7 3 Fault codes cont Page 63 84 Control panel Fault Fault Possible cause Checking codes F14 Drive overtempera Temperature of heat sink over 75 C Check the cooling air flow ture Check that the heat sink is not dirty Check ambient temperature Check that the switching fre quency is not too high compared with ambient temperature and motor load F15 Motor stalled The motor stall protection has tripped Check the motor F16 Motor overtem perature The frequency converter motor temperature model has detected motor overheat motor is overloaded Decrease motor load Check the temperature model parameters if the motor was not overheated F17 Motor underload The motor underload protection has tripped F18 Analog input hard Component failure on control board Contact your Honeywell affiliate ware fault F19 Option board identi Reading of the option board has failed Check the installation fication If installation is correct contact your Honeywell affiliate F20 10 V voltage refer ence 10 V reference shorted on control board or option board Check the cablin
246. ks hae RAN alm a e a a dM UD012K25 Figure 5 5 29 Automatic restart Parameter 8 1 determines how many automatic restarts can be made during the trial time set by the parameter 8 2 The time counting starts from the first autorestart If the number of restarts does not exceed the value of the parameter 8 1 during the trial time the counting is cleared after the trial time has elapsed The next fault starts the counting again Page 5 37 8 3 8 4 8 5 8 6 8 7 8 8 Multi purpose Control Application Automatic restart start function The parameter defines the start mode 0 Start with ramp 1 Flying start see parameter 4 6 Automatic restart after undervoltage trip O No automatic restart after undervoltage fault trip 1 Automatic restart after undervoltage fault condition returns to the normal condition DC link voltage returns to the normal level Automatic restart after overvoltage trip 0 No automatic restart after overvoltage fault trip 1 Automatic restart after overvoltage fault condition returns to the normal condition DC link voltage returns to the normal level Automatic restart after overcurrent trip 0 No automatic restart after overcurrent fault trip 1 Automatic restart after overcurrent faults Automatic restart after reference fault trip 0 No automatic restart after reference fault trip 1 Automatic restart after analog current reference signal 4 20 mA ret
247. l 0 Scaling off gt 0 Maximum frequency value Reference invert 0 1 0 No inversion 1 Reference inverted Reference filter time Parameter 0 00 10 00s Default Custom 0 No filtering Description Analog output function 1 0 Not used Scale 100 1 O P frequency 0O fmax 2 Motor speed 0 max speed 3 O P current 0 2 0xlncx 4 Motor torque 0O 2xTpmot 5 Motor power 0 2xPymot 6 Motor voltage 0 100 xV mot 7 DC link volt 0 1000 V Analog output filter time 0 00 10 00 s 0 no filtering Analog output inversion 0 1 0 Not inverted 1 Inverted Analog output minimum 0 1 0 0mA 1 4mA Analog output scale 10 1000 Note Parameter value can be changed only when the drive is stopped Page 1 8 Standard Application Group 3 Output and supervision parameters Parameter Default Description Digital output function 1 0 Not used 1 Ready 2 Run 3 Fault 4 Fault inverted 5 CX overheat warning 6 External fault or warning 7 Reference fault or warning 8 Warning 9 Reversed 10 Multi step speed selected 11 At speed 12 Motor regulator activated 13 Output frequency limit supery 14 Control from O terminal Relay output 1 function As parameter 3 6 Relay output 2 function As parameter 3 6
248. l cables should be minimum of 20 gauge shielded multicore cables see table 6 1 1 The maximum wire size rating of the terminals is 14 6 2 2 Galvanic isolation barriers The control connections are isolated from the utility potential and the I O ground is connected to the frame of the CX CXL CXS via a 1 MQ resistor and 4 7 nF capacitor The control I O ground can also be connected directly to the frame by changing the position of the jumper X4 to ON position see figure 6 2 2 1 Digital inputs and relay outputs are isolated from the I O ground Page 53 84 Terminal Wiring Function Specification a4 10V ef Reference voltage output Burden max 10 mA Vin Analog signal input Signal range 10 V 10 V DC GND I O ground lint Analog signal input lin Analog signal input Signal range 0 4 20 mA 24V out 24V supply voltage 20 load max 100 mA GND I O ground DIA1 Digital input 1 DIA2 Digital input 2 DIA3 Digital input 3 Ri min 5 kQ ojojo INI oaJ A BR w PP CMA Common for DIA1 DIA3 Must be connected to GND or 24V of I O terminal or to external 24V or GND k N 24V out 24V supply voltage Same as 6 i o GND I O ground Same as 7 _ A DIB4 Digital input 4 4 o1 DIB5 Digital input 5 oO DIB6 Digital input
249. l motor pot 9 Signal from internal motor pot reset if CX CXL CXS is stopped Jog speed reference fmin fmax 1 1 1 2 5 0 Hz Current limit 0 1 2 5 x Incx 1 5x Incx Output current limit A of the unit V Hz ratio selection 0 2 0 0 Linear 1 Squared 2 Programmable V Hz ratio V Hz optimization 0 1 0 None 1 Automatic torque boost Nominal voltage of the motor 180 690 V 230 V 380 V 480 V 575 V CX CXL CXS V 3 2 CX CXL CXS V 3 4 CX CXL CXS V 35 CXV36 Nominal frequenc of the motor 30 500 Hz 60 Hz fn from the nameplate of the motor Nominal speed of the motor 1 20000 rpm 1720 rpm Nn from the nameplate of the motor Nominal current of the motor 2 5X Incx Incx from the nameplate of the motor Supply voltage 208 240 230 V CX CXL CXS V 3 2 380 440 380 V CX CXL CXS V 3 4 380 500 480 V CX CXL CXS V 35 525 690 575 V CXV36 Parameter conceal 0 1 0 Visibility of the parameters 0 All parameter groups visible 1 Only group 1 is visible Parameter value lock Note Parameter value can be changed only when the drive is stopped Table 5 4 1 Group 1 basic parameters If 1 2 gt motor synchr speed check suitability for Disables parameter changes 0 Changes enabled 1 Changes di
250. losed start ETENE Jog speed select Contact open no action programmable Contact closed Jog speed gt rn ee Source A B selection Contact open source A is active t Contact closed source B is active L Common for DIB4 DIB6 Connect to GND or 24V Analog output Programmable par 3 1 i READY Output frequency Range 0 20 mA R max 500 Q i Q a oa Digital output Programmable par 3 6 p READY Open collector l lt 50 mA V lt 48 VDC Relay output 1 Programmable par 3 7 i RUN L RUN x TENE a FAULT co Relay output 2 Programmable par 3 8 990 3 gt a gt Ge FAULT VAC 4 J si Max a Figure 4 2 1 Default VO configuration and connection example of the PIl Control Application with 2 wire transmitter Page 4 2 Pl control Application 4 3 Control signal logic The logic flow of the I O control signals and pushbutton signals from the panel is shown in figure 4 3 1 PARAMETERS 2 26 Source B ref select 2 15 Source A ref select 7 4 12 Jogging speed ref l Reference PROGRAMMABLE Source B PUSH BUTTON 2 Reference Source A Actual value selection Pl controller Uin lin Uin lin Uin lin lin X Uin Actual Internal frequency reference DIB5 eo Programmable Source A B selection Internal DIB6 fault reset DIA3 Ext fault reset j e rogrammable i o o DIB4 Start Stop source B C Internal
251. ltage of the motor Linear Default Nominal frequency of the Squared motor Hz Figure 3 4 1 Linear and squared V Hz curves Programm The V Hz curve can be programmed with three different points V Hz curve The parameters for programming are explained in chapter 3 5 2 2 A programmable V Hz curve can be used if the standard settings do not satisfy the needs of the application See figure 3 4 2 U V Parameter 6 4 Default nominal voltage of the Field weakening point Parameter 6 6 Default 10 Default nominal frequency of the motor Parameter 6 7 Default 1 3 Parameter 6 5 Parameter 6 3 f Hz Default 5 Hz Figure 3 4 2 Programmable V Hz curve Page 3 6 Multi step Speed Control Application V Hz optimization Automatic The voltage to the motor changes automatically which torque allows the motor to produce enough torque to start and boost run at low frequencies The voltage increase depends on the motor type and horsepower Automatic torque boost can be used in applications where starting torque due to starting friction is high e g in conveyors 10 11 12 13 14 15 16 NOTE In high torque low speed applications it is likely the motor will overheat i If the motor has to run for a prolonged time under these conditions special attention must be paid to cooling the motor Use external cooling for the motor if the temperature
252. lti step speed select 2 Multi step speed select 3 reference DIB4 DIB5 DIB6 Par 1 6 0 0 0 Par 1 17 1 0 0 Par 1 18 0 1 0 Par 1 19 1 1 0 Par 1 20 0 0 1 Par 1 21 1 0 1 Par 1 22 0 1 1 Par 1 23 1 1 1 Table 3 4 2 Selection of multi step speed reference 1 7 Page 3 8 Multi step Speed Control Application 3 5 Special parameters Groups 2 8 3 5 1 Parameter tables Input signal parameters Group 2 Parameter Start Stop logic selection Default Custom Description DIA1 DIA2 Start reverse Reverse Run enable Stop pulse 0 Start forward 1 Start Stop 2 Start Stop 3 Start pulse DIA3 function terminal 10 0 Not used 1 Ext fault closing contact 2 External fault opening contact 3 Run enable 4 Acc Dec time selection 5 Reverse if par 2 1 3 6 Jog speed 7 Fault reset 8 Acc Dec operation prohibit 9 DC braking command 3 16 Vin signal range 0 1 0 0 10 V 1 Custom setting range Vin custom setting min 0 00 100 00 0 01 0 00 Vin custom setting max 0 00 100 00 0 01 100 00 Vin signal inversion 0 1 1 0 0 Not inverted 1 Inverted Vin signal filter time 0 00 10 0s 0 No filtering lin Signal range 0 2 0 0 20 mA 1 4 20 mA 2 Custom setting range lin custom setting minim 0 00 100 00 0 01 0 0
253. lways coasting stop mode after fault A warning or a fault action and message is generated if the 4 20 mA reference signal is used and the signal falls below 4 mA The information can also be programmed via digital output DO1 and via relay outputs RO1 and RO2 Response to external fault 0 No response 1 Warning 2 Fault stop mode after fault according to parameter 4 7 3 Fault stop mode after fault always by coasting A warning or a fault action and message is generated from the external fault signal in the digital input DIA3 The information can also be programmed into digital output DO1 and into relay outputs RO1 and RO2 Phase supervision of the motor 0 No action 2 Fault Phase supervision of the motor ensures that the motor phases have approximately equal current Page 3 30 Multi step Speed Control Application 7 4 Ground fault protection 0 No action 2 Fault Ground fault protection ensures that the sum of the motor phase currents is zero The standard overcurrent protection is always working and protects the frequency converter from ground faults with high current levels Parameters 7 5 7 9 Motor thermal protection General Motor thermal protection is to protect the motor from overheating The CX CXL CXS drive is capable of supplying higher than nominal current to the motor If the load requires this high current there is a risk that motor will be thermally overloaded This is true especially at lo
254. m scaling Actual value 1 max scale 320 00 320 00 100 00 100 no maximum scaling Actual value 2 min scale 320 00 320 00 0 00 0 no minimum scaling Actual value 2 max scale 320 00 320 00 100 00 100 no maximum scaling Error value inversion 0 1 0 No 1 Yes Pl controller reference value rise time 0 0 100 0s Time for reference value change from 0 to 100 Pl controller reference value fall time 0 0 100 0s Time for reference value change from 100 to 0 Direct frequency reference source B o 4 0 Analog voltage input term 2 1 Analog current input term 4 2 Set reference from the panel reference r1 3 Signal from internal motor pot 4 Signal from internal motor pot reset if CX CXL CXS unit is stopped Source B reference scaling minimum value O0 par 2 28 Selects the frequency that corres 6 20 ponds to the min reference signal Source B reference scaling maximum value O fmax Selects the frequency that corresponds to the max reference signal 0 Scaling off gt 0 Scaled maximum value Note Parameter value can be changed only when the drive is stopped 6 20 Page 6 9 Group 3 Output and supervision Parameter Pump and fan control Application parameters Default Custom Description Analog output func
255. mit Figure 2 5 16 Reducing torque supervision limit Free analog input f gt Signal 0 eae UD012K60 Page 2 21 Local Remote Control Application 2 20 Motor potentiometer ramp time Defines how fast the electronic motor potentiometer value changes 3 1 Analog output Content See table on page 2 9 lt Unfiltered signal 100 4 3 2 Analog output filter time Filters the analog output signal eal tle See figure 2 5 17 t s gt Figure 2 5 17 Analog output oeae filtering 3 3 Analog output invert Inverts analog output signal mee A max output signal minimum set value onpa min output signal maximum set value ee 12 mAL 2 oe tS ea eee ee 1omA 4 7 7 ASHER gS Ss cre SS 5 4mA 4 N 2 I i Selected para 3 1 l Param 3 5 200 signal max value Figure 2 5 18 Analog output invert oma 0 0 5 1 0 Ch012K17 3 4 Analog output minimum Defines the signal minimum to be either O0 mA or4 mA See figure 2 5 19 3 5 Analog output scale Scaling factor for analog output See figure 2 5 19 Page 2 22 on Local Remote Control Application Signal Max value of the signal es A nalog output Output fre Max frequency p 1 2 current Param 3 5 Param 3 5 quency 20m 7 Motor speed Max speed Nn Xfmaxfn Output 2 x lacx c
256. mits correspond to the time required for the output frequency to accelerate from the set minimum frequency par 1 1 to the set maximum frequency par 1 2 1 5 1 6 Multi step speed reference 1 Multi step speed reference 2 Parameter values are limited between minimum and maximum frequency A Hz Ref lin 7 Par 1 6 Ref Vin 1 Par 1 17 0 Par 1 5 l l l l l Closed p j i DIB4 l pen Closed l DIBB RTR EEE Open UD012K06 Figure 10 4 1 1 Example of Multi step speed references 1 7 Current limit This parameter determines the maximum motor current that the CX CXL CXS will provide short term 1 8 V Hz ratio selection Linear The voltage of the motor changes linearly with the frequency from 0 0 Hz to the nominal frequency of the motor The nominal voltage of the motor is supplied at this frequency See figure 10 4 1 2 Linear V Hz ratio should be used in constant torque applications This default setting should be used if there is no special requirement for another setting Page 76 84 1 9 Basic Application Squared The voltage of the motor changes following a squared curve from 0 Hz 1 to the nominal frequency of the motor The Nominal voltage of the motor is supplied at this frequency See figure 10 4 1 2 The motor runs undermagnetized below the nominal frequency and it prod
257. model standard in CXS model Figure 4 1 CX CXL CXS block diagram Page 13 84 Technical data 4 2 Power ratings 440 500Vac 10 15 50 60 Hz 3 Input Series CX standard protected chassis Rated Horsepower and output current Dimensions Catalog Constant Torque Variable Torque Frame Oi2e WxHxD Number 7 Enclosure Style inches CX 0030 HP V 35 CX 0040 HP V 35 CX 0040 HP V 3 5 CX 0050 HP V 35 TAES Zeo E i e oxov 3s 75 f cxmo nev ss 10 f 15 oxoso mP vas 5 f 2 exo HP vss 2 f 27 rox oas0 HP v35 2 f 34 EEM a o f E 77 e m 1 M4 Protected 4 7 x 11 4 x 8 5 M5 Protected 6 2 x 15 9 x 9 4 CX 0300 HP V 35 CX 0400 HP V 35 M6 Protected 8 7 x 20 7 x 11 4 vt 11 15 21 27 32 40 52 65 77 100 pe ord o gom 125 125 160_ M7 Chassis 180 Cx1500HPV35 150 180 jro M8 Chassis 19 5 x 35 0 x 13 9 t 5 6 5 5 Oo O AJ AJON N OJ OINO N ojojoj exo vss 200_ 0 M9 Chassis 27 6 x 39 4 x 15 4 A fo 0 M1 hassis 38 9 4 x 15 4 Oxs HP Vas Soo coo e00 f e72 Onassis fasio x 904 x 4 CX 6000 HP V 35 700 880 Mi1 Chassis 55 1 x 39 4 x 15 600 1020 Cx8000 HP V35 800 1020 900 1070 CX9000 HP V35 900 1070 1000 1200 M12 Chassis 77 9x 39 4 x 15 4 1212 1000 oa Oo Hp 3 5 7 5 10 15 20 25 30 40 50 75 00 00 00 00 1000 20 e
258. n A Current limit par 1 7 Overload area Par 7 6 4 IT Par 7 7 f Figure 5 5 23 Motor thermal current Par 7 9 mae curve Motor thermal protection zero frequency current The current can be set between 10 0 150 0 xX Inmotor This parameter sets the value for thermal current at zero frequency Refer to the figure 5 5 23 The default value is set assuming that there is no external fan cooling the motor If an external fan is used this parameter can be set to 90 or higher The value is set as a percentage of the motor s nameplate nominal current parameter 1 13 not the drive s nominal output current The motor s nominal current is the current which the motor can stand in direct on line use without being overheated If you change the parameter 1 13 this parameter is automatically restored to the default value Setting this parameter or parameter 1 13 does not affect to the maximum output current of the drive Parameter 1 7 alone determines the maximum output current of the drive Motor thermal protection time constant This time can be set between 0 5 300 minutes This is the thermal time constant of the motor The larger the motor the greater the time constant The time constant is defined as the time that it takes the calcu lated thermal stage to reach 63 of its final value The motor thermal time is specific to a motor design and it varies between different motor manufactur
259. n Reference in band limit indication Second set of ramps and choice of linear or S curve DC braking at start and stop Three prohibit frequency lockout ranges Programmable V Hz curve and switching frequency Autorestart function Motor Thermal and Stall protection fully programmable Motor Underload protection 12 6 Multi purpose Control Application In the Multi purpose Control Application the frequency reference can be selected from the analog inputs joystick control motor potentiometer or a mathematical function of the analog inputs Multi step speeds and jog speed can also be selected if the digital inputs are programmed for these functions Digital inputs DIA1 and DIA2 are reserved for Start stop logic Digital inputs DIAS DIB6 are programmable for multi step speed select jog speed select motor potentiometer external fault ramp time select ramp prohibit fault reset and DC brake command function All outputs are freely programmable Other additonal functions Programmable Start stop and Reverse signal logic Analog input signal range selection Two frequency in band limit indications Torque in band limit indication Reference in band limit indication Second set of ramps and choice of linear or S curve DC braking at start and stop Three prohibit frequency lockout ranges Programmable V Hz curve and switching frequency Autorestart function Motor Thermal and Stall pr
260. n of the Pl controller If this parameter is set to 100 a 10 change in error value causes the controller output to change by 1 0 Hz If the parameter value is set to 0 the Pl controller operates as an I controller Pl controller I time Defines the integration time of the Pl controller Current limit This parameter determines the maximum motor current that the CX CXL CXS will provide short term V Hz ratio selection Linear The voltage of the motor changes linearly with the frequency in the constant flux area from 0 Hz to the field weakening point 0 par 6 3 where a constant voltage nominal value is supplied to the motor See figure 4 4 2 A linear V Hz ratio should be used in constant torque applications This default setting should be used if there is no special requirement for another setting Squared The voltage of the motor changes following a squared curve form with the frequency in the area from 0 Hz to the field weakening 1 point par 6 3 where the nominal voltage is supplied to the motor See figure 4 4 2 The motor runs undermagnetized below the field weakening point and produces less torque and electromechanical noise A squared V Hz ratio can be used in applications where the torque demand of the load is proportional to the square of the speed e g in centrifugal fans and pumps Page 4 5 1 9 Pl control Application Field weakening point Default Nominal voltage of
261. nce value Calculation of freq ref and control logic of auxiliary drives Aux drive 1 start Aux drive 3 start DIB5 Programmable Internal DIB6 Source A B selection fault reset ya i EE gt 1 _ gt n Ext fault reset P Programmable a p i Start Stop source B Internal DIA1 Start Stop source A Start Stop DIAZ External fault Programmable Aux drive 2 start j contrlline signal line UD012K49 Figure 6 3 1 Control signal logic of the Pump and Fan control Application Switch positions shown are based on the factory settings Page 6 3 Pump and fan control Application 6 4 Basic parameters Group 1 6 4 1 Parameter table Group 1 Parameter Range Default Custom Description Minimum frequency O fmax 0 Hz Maximum frequency fmin 120 500 Hz 60 Hz Acceleration time 1 0 1 3000 0 s 1 0s Time from fmin 1 1 to fmax 1 2 Deceleration time 1 0 1 3000 0 s 1 08s Time from fmax 1 2 to fmin 1 1 Pl controllergain 1 1000 100 Pl controller l time 0 00 320 00 s 10 00s 0 No Integral timein use Current limit 0 1 2 5 x Inex 1 5 x Incx Output current limit A of the unit V Hz ratio selection 0 2 0 0 Linear 1 Squared 2 Programmable V Hz ratio V hz optimizat G 0 1 0 None 1 A
262. nd 10 Multi Step speed select 2 11 Motorized pot speed up DIB6 function 0 Not used 5 18 terminal 16 1 Ext fault closing contact 2 External fault opening contact 3 Run enable 4 Acc dec time selection 5 Reverse 6 Jog speed 7 Fault reset 8 Acc dec operation prohibit 9 DC braking command 10 Multi Step speed select 3 11 Motorized pot speed down Vin Signal range 0 0 10 V 5 19 1 Custom setting range 2 10 10 V can be used only with Joystick control Note Parameter value can be changed only when the drive is stopped Page 5 9 Parameter Vin custom setting min Multi purpose Control Application 0 00 100 00 Default 0 00 Custom Description Vin custom setting max 0 00 100 00 100 00 Vin signal inversion 0 1 0 0 Not inverted 1 Inverted Vin signal filter time 0 00 10 00 sl 0 No filtering lin Signal range 0 2 0 0 20 mA 1 4 20 mA 2 Custom setting range lin custom setting minim 0 00 100 00 0 01 0 00 lin Custom setting maxim L0 00 100 00 0 01 100 00 lin Signal inversion 0 1 1 0 0 Not inverted 1 Inverted lin signal filter time 0 01 10 00 s 0 01 s 0 10s 0 No filtering Vin minimum scaling 320 00 320 00 0 01 0 00 0 no minimum scaling Vin max
263. nd common terminals CMA CMB can be either external or internal terminals 6 and 12 of the drive Ground DIA DIA2 DIA3 T 24 V _ CMA Negative logic 0 V active signal input is active when the switch is closed Page 55 84 Control panel 7 CONTROL PANEL 7 1 Introduction The control panel of the CX CXL CXS drive features an alphanumeric Display with five indicators for the Run status RUN READY FAULT C STOP and two indicators for the control source The panel embodies three indicator lines for the menu submenu descriptions and the value amount of the submenus The eight push buttons on the panel are used for panel programming and monitoring The panel is detachable and isolated from the input line potential The display examples in this chapter present the text and numeric lines of the Alphanumeric Display only The drive status indicators are not included in the examples ENTER DRIVE STATUS INDICATORS RUN lights when motor is running C 0 7 shows the selected rotation STOP s lights when motor is not running READY lights when input voltage is supplied and the unit is ready for use FAULT lights when a fault in frequency drive occurs ALARM lights when a warning is given Panel Remote 7 Shows the active control source Figure 7 1 Control panel with LED display Menu button left Move forwar
264. ndertemperature fault trip 0 No automatic restart after temperature fault trip 1 Automatic restart after heatsink temperature has returned to its normal level between 10 C 75 C Page 4 35 4 6 Panel reference Pl control Application The Pl control application has an extra reference r2 for the Pl controller on the panel s refer ence page See table 4 6 1 Reference Reference Range Step Function number name r1 Frequency ba nee 0 01 Hz Reference for panel control and reference I O terminal Source B reference r2 Pl controller 0 100 0 1 Reference for Pl controller reference 4 7 Monitoring data The Pl control application has additional items for monitoring See table 4 7 1 Number Data name Unit Description vi Output frequency Hz Frequency to the motor v2 Motor speed rpm Calculated motor speed v3 Motor current A Measured motor current v4 Motor torque Calculated actual torque nominal torque of the unit v5 Motor power Calculated actual power nominal power of the unit v6 Motor voltage V Calculated motor voltage v7 DC link voltage V Measured DC link voltage v8 Temperature C Temperature of the heat sink v9 Operating day counter DD dd Operating days 1 not resettable v 10 Operating hours HH hh Operating hours 2 can be reset with program trip counter mable button 3 v 11 MW hours MWh Total MW
265. nertia or starting friction may cause prolonged acceleration times Flying start 1 The drive starts into a running motor by first finding the speed the motor is running at Searching starts from the maximum frequency down until the actual frequency reached The output frequency then accelerates decelerates to the set reference value at a rate determined by the acceleration deceleration ramp parameters Use this mode if the motor may be coasting when the start command is given With the flying start it is possible to ride through short utility voltage interruptions Stop function Coasting 0 The motor coasts to an uncontrolled stop with the CX CXL CXS off after the Stop command Ramp 1 After the Stop command the speed of the motor is decelerated according to the deceleration ramp time parameter If the regenerated energy is high it may be necessary to use an external braking resistor for faster deceleration DC braking current Determines whether DC braking is ON or OFF It also determines the braking duration time of the DC brake when the motor is stopping The function of the DC brake depends on the stop function parameter 4 7 See figure 3 5 23 0 DC brake is not used gt 0 DC brake is in use depending on the setup of the stop function param 4 7 The time is set by the value of parameter 4 9 Page 3 26 Multi step Speed Control Application Stop function 0 coasting After the stop command the mo
266. ng Control card hol I O terminals ool olay ald Connect the shield to the terminal be Utility cable Fix the control terminals cable with a tie DC link brake wrap resistor terminals Motor cable terminals Ground terminal Ground terminal el Rubber grommets Motor cable _ Brake resistor cable Utility cable Control cable m4IP21 Figure 6 1 4 4 Cable assembly for NEMA 1 CXL 0030 0075HP V 3 4 5 and CXL 0020 0040HP V 3 2 Page 41 84 Wiring Control card T O terminals 3 4 T 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Connect the shield to 9 ee the terminal O O Fix the control imo FF cable with a tie wrap LOlLOlO Utility cable terminals L DC Abraka i resistor terminals elel aeololerc L4 L2 3 TU v iwr Motor cable OOPPO n Ground terminal Ground terminal IL e tol SS Rubber grommets A TM cable Praka Pere cable Control cable Utility cable ee Figure 6 1 4 5 Cable assembly for NEMA 1 CXL 0100 0200HP V 3 4 5 and CXL 0050 0100
267. ning or a fault based on a short time overload of the motor e g stalled shaft The stall protection is faster than the motor thermal protection The stall state is defined with Stall Current and Stall Frequency In the Standard application they both have fixed values See figure 1 5 18 If the current is higher than the set limit and output frequency is lower than the set limit the stall state is true If the stall state lasts longer than 15 s a stall warning is given on the display panel In the other applications it is possible to set the parameters of the Stall protection function Tripping and warning will give a display indication If tripping is set on the drive will stop and generate a fault Deactivating the stall protection by setting the parameter to O will reset the stall time counter to zero Page 1 22 Standard Application Stall area 130 Nmotor f Re gt 25 Hz UMCH7_10 Figure 1 5 18 Stall state Automatic restart number of tries Automatic restart trial time N The Automatic restart function will restart the drive after the following faults overcurrent overvoltage undervoltage over under temperature of the drive reference fault A Number of faults during t trial aos i trial trial ee i Ze vi Par 8 1 3 fl i 1 ttria Par 8 2 t gt Three faults Four faults RUN UD012K25 SIOP tenaaa aa oe Figure 1 5 19 Automat
268. not running The control I O terminals are isolated from the line potential but the relay outputs and other O s if jumper X4 is in OFF position see figure 6 2 2 1 may have dangerous external voltages connected even if the power is disconnected from the CX CXL CXS The CX CXL CXS has a large capacitive leakage current An upstream disconnect protection device is to be used as noted in the National Electric Code NEC Only spare parts obtained from a Honeywell authorized distributor can be used 1 2 Safety instructions The CX CXL CXS is meant only for fixed installation Do not make any connections or measurements when the CX CXL CXS is con nected to the utility After disconnecting the utility wait until the unit cooling fan stops and the indicators on the control panel are extinguished if no keypad is present check the indicators in the cover Wait 5 more minutes before doing any work on the CX CXL CXS connections Do not open the cover before this time has run out Do not make any voltage withstand or megger tests on any part of the CX CXL CXS Disconnect the motor cables from the CX CXL CXS before meggering the motor cables Do not touch the C circuits on the circuit boards Static voltage dis charge may destroy the components Before connecting to the utility make sure that the cover of the CX CXL CXS is closed Make sure that nothing but a three phase motor is connected to the motor terminal with the ex
269. ntage of the motor s nameplate nominal current parameter 1 13 If parameter 1 13 is adjusted this parameter is automatically restored to its default value Stall time The time can be set between 2 0 120 s This is the maximum allowed time for a stall stage There is an internal up down counter to count the stall time Refer to figure 3 5 31 If the stall Stall area time counter value goes above this limit the protection will cause a trip refer to the parameter 7 Par 7 11 10 Maximum stall frequency f Hz gt Par 7 13 gt umcn7_11 The frequency can be set between 1 f na Parameter 1 2 In the stall state the output frequency has to be smaller than Figure 3 5 30 Setting the stall characteristics this limit Refer to the figure 3 5 30 Parameters 7 14 7 17 A Stall time counter Underload protection General Tri The purpose of motor underload pet protection is to ensure that there is load on the motor while the drive is running If the motor load is reduced there might be a problem in the process e g broken belt or dry pump Par 7 127 Trip warning par 7 10 UMCH7_12 Motor underload protection can be adjusted by setting the underload curve with parameters 7 15 and 7 16 The underload Stal eee el Time gt No stall curve is a squared curve set between zero frequency and the Figure 3 5 31 Counting the stall time field we
270. ntity and quality of the cooling air chapters 5 1 and 5 2 4 Check that moisture has not condensed inside the CX CXL CXS drive Check that all Start Stop switches connected to the I O terminals are in the Stop state Connect the CX CXL CXS to the utility and switch the power ON Ensure the parameters of the Group 1 match the application Set the following parameters to match the motor nameplate nominal voltage of the motor nominal frequency of the motor nominal speed of the motor nominal current of the motor supply voltage See values from the nameplate of the motor Start up test without the motor Perform either test A or B A Controls from the I O terminals turn Start Stop switch to ON position change the frequency reference check from the Monitoring page of the control panel that the output frequency follows the frequency reference turn Start Stop switch to OFF position B Controls from the Control Panel change controls from the I O terminals to the Control Panel with the programmable button B2 see chapter 7 6 push Start button go to the Reference Page and change the frequency reference with the buttons M O see chapter 7 5 go to the Monitoring Page and check that the output frequency follows the reference see chapter 7 3 push Stop button Page 69 84 Startup 9 If possible make a start up test with a motor which is not connected to the process If the inve
271. o 3 and pressing Enter button 3 Load down user s set parameters By setting the value of parameter 0 2 to 3 and then pressing Enter button the parameter values are set according to the user s parameter set Read parameters up to the panel possible only with the graphic panel Load down parameters from the panel possible only with the graphic panel 0 3 Language selection This parameter selects the language of the text displayed on the operator s panel Page 81 84 Application package 12 Application package 12 1 Application Selection To use one of the Application package applications first open the Application package lock parameter 1 15 Group 0 then comes visible see figure 11 1 Changing the value of parameter 0 1 changes the active application See table 11 1 Applications are presented in sections 12 2 12 7 and in more detail in the following separate application manual 12 2 Standard Application The Standard Application has the same I O signals and same Control logic as the Basic application Digital input DIA3 and all outputs are freely programmable Other additonal functions Programmable Start Stop and Reverse signal logic Reference scaling One frequency limit supervision Second set of ramps and choice of linear or S curve Programmable start and stop functions DC braking at stop One prohibit frequency lockout range Programmable V Hz curve and switching frequency
272. oading 1 Load default settings 2 Read up parameters to user s set 3 Load down user s set parameters 4 Read parameters up to the panel possible only with the graphic panel 5 Load down parameters from the panel possible only with graphic panel 0 3 Language 0 5 0 English 81 selection 1 German 2 Swedish 3 Finnish 4 Italian 5 French Table 11 1 System parameters Group 0 11 2 Parameter descriptions 0 1 Application selection With this parameter the Application type can be selected The default setting is the Basic Application Applications are described in chapter 12 Page 80 84 System parameter group 0 0 2 Parameter loading With this parameter it is possible to do different kinds of parameter load operations After the operation is completed this parameter value changes automatically to 0 loading ready 0 Loading ready Select loading Loading operation has been completed and the drive is ready to operate 1 Load default settings By setting the value of parameter 0 2 to 1 and then pressing the Enter button the parameter default values are used The default values are based on the application selected with parameter 0 1 2 Read up parameters to User s set By setting the value of parameter 0 2 to 2 and then pressing Enter button the parameter values are read up to the User s parameter value set The parameter values can be later loaded by setting parameter 0 2 t
273. oint of the curve See figure 3 5 27 V Hz curve middle point voltage If the programmable V Hz curve has been selected with parameter 1 8 this parameter defines the middle point voltage of motor nominal voltage of the curve See figure 3 5 27 Output voltage at zero frequency If the programmable V Hz curve has been selected with parameter 1 8 this parameter defines the zero frequency voltage of the curve See figure 3 5 27 Page 3 29 DO oOo 7 1 7 2 7 3 Multi step Speed Control Application U V Default nominal voltage of the motor Va Parameter 6 4 Field weakening point Parameter 6 6 Default 10 Default nominal frequency of the motor Parameter 6 7 Default 1 3 Parameter 6 5 Parameter 6 3 f Hz Default 5 Hz Figure 3 5 27 Programmable V Hz curve Overvoltage controller Undervoltage controller These parameters allow the over undervoltage controllers to be switched ON or OFF This may be useful in cases where the utility supply voltage varies more than 15 10 and the application requires a constant speed If the controllers are ON they will change the motor speed in over undervoltage cases Overvoltage faster undervoltage slower Over undervoltage trips may occur when controllers are not used Response to the reference fault 0 No response 1 Warning 2 Fault stop mode after fault according to parameter 4 7 3 Fault a
274. on may cause prolonged acceleration times Flying start 1 The drive starts into a running motor by first finding the speed the motor is running at Searching starts from the maximum frequency down until the actual frequency reached The output frequency then accelerates decelerates to the set reference value at a rate determined by the acceleration deceleration ramp parameters Use this mode if the motor may be coasting when the start command is given With the flying start it is possible to ride through short utility voltage interruptions Stop function Coasting 0 The motor coasts to an uncontrolled stop with the CX CXL CXS off after the command Ramp 1 After the Stop command the speed of the motor is decelerated according to the deceleration ramp time parameter If the regenerated energy is high it may be necessary to use an external braking resistor for faster deceleration DC braking current Defines the current injected into the motor during DC braking Page 5 27 Multi purpose Control Application 4 9 DC braking time at stop Defines if braking is ON or OFF and braking time of the DC brake when the motor is stopping The function of the DC brake depends on the stop function parameter 4 7 See figure 5 5 18 0 DC brake is not used gt 0 DC brake is in use and its function depends on the Stop function param 4 7 and the time depends on the value of parameter 4 9 Stop function 0 coasting A
275. ontrol I O value can be selected from the analog inputs or from mathematical functions of the analog inputs The direct frequency reference can be used for control without the Pl controller The frequency reference can be selected from analog inputs or panel reference NOTE Remember to connect CMA and CMB inputs Pl controller reference value Terminal Description 10V re Reference output Voltage for a potentiometer etc Vint Analog input Pl controller reference value 2 wire L voltage programmable range 0 10 V DC transmitter T I O ground Ground for reference and controls Actual eo Analog input Pl controller actual value valus current programmable range 0 20 mA 0 4 20MA ey See Control voltage output Voltage for switches etc max 0 1 A E Control voltage ground Ground for reference and controls i A Start Stop Contact open stop lt Source A Pl controller Contact closed start External fault Contact open no fault on o EAN programmable Contact closed fault Fault reset Contact open no action ee ee programmable Contact closed fault reset ke Common for DIA1 DIA3 Connect to GND or 24V Se Control voltage output Voltage for switches same as 6 E I O ground Ground for reference and controls rr a ee Start Stop Contact open stop Source B Direct freq ref Contact c
276. ontroller output Operating day counter MWh hours trip counter Voltage analogue input Current analogue input Digital input stat group A Digital input stat group B Motor temperature rise Motor temperature rise Hz rpm A V V C DD full days dd desimal part of a day HH full hours hh desimal part of an hour Digital input status indication V15 Dig input A Stat 0 open input 1 closed input active Example Input Terminal DIA1 0 01 rt closed DIA2 closed 8 DIA3 open Programmable push buttons BTNS Faults and warnings Fault Overcurrent Overvoltage Earth fault Inverter fault Charging switch Under voltage Input line supervision Output phase supervision Brake chopper supervision Vacon under temperature Vacon over temperature Motor stalled Motor over temperature Motor underload Analogue input hardware fault Option board identification 10 V voltage reference 24 V supply EEPROM checksum fault Microprocessor watchdog Panel communication error Thermistor protection Analogue input 4 20 mA lt 4 mA External fault Warnings Motor stalled Motor over temperature Motor underload The values in the Fault history MWh counters or operating day hour counters might have been changed in the previous mains interrupt Change of application has failed Unbalance current fault Vacon overtem
277. or Nominal current of the motor Find the value I from the nameplate of the motor The internal motor protection function uses this value as a reference value Page 77 84 Basic Application 1 14 Supply voltage Set parameter value according to the nominal voltage of the supply Values are predefined for CX CXL CXS V 3 2 CX CXL CXS V 3 4 CX CXL CXS V 3 5 and CX V 3 6 see table 10 4 1 1 15 Application package lock The application package lock can be opened by setting the the value of the parameter 1 15 to 0 It will then be possible to enter the parameter group 0 from parameter 1 1 by pressing arrow down button see figure 11 1 The number of the Application can be selected from the table 11 1 and it is selected by the value of parameter 0 1 After this the new Application is in use and its parameters will be found in the Application manual 1 16 Parameter value lock Defines access to the changes of the parameter values 0 parameter value changes enabled 1 parameter value changes disabled 1 17 Basic frequency reference selection 0 Analog voltage reference from terminals 2 3 e g a potentiometer 1 Analog current reference trom terminals 4 5 e g a transducer 2 Panel reference is the reference set from the Reference Page REF see chapter 7 5 1 18 Analog input I range Defines the minimum value of the Analog input lin signal terminals 4 5 Page 78 84 Basic Application 10 5 Motor protec
278. or motor cable Utility supervision Trip if any of the input phases is missing Motor phase supervision Trip if any of the output phases is missing Unit over temperature Yes protection Motor overload protection Yes Stall protection Yes Motor underload protection Yes Short circuit protection of Yes 24V and 10V reference voltages Table 4 3 1 Specifications Page 23 84 Installation 5 INSTALLATION 5 1 Ambient conditions The environmental limits mentioned in table 4 3 1 must not be exceeded 5 2 Cooling The specified space around the drive ensures proper cooling air circulation See table 5 2 1 for dimensions If multiple units are to be installed above each other the dimensions must be b c and air from the outlet of the lower unit must be directed away from the inlet of the upper unit With high switching frequencies and high ambient temperatures the maximum continuous output current has to be derated according to Table 5 2 3 and Figures 5 2 3 a d Frame Size Enclosure Style Dimensions in M3 Compact NEMA 1 1 M4 Protected amp NEMA 12 M4 NEMA 1 M4B M5B Compact NEMA 1 1 M5 Protected amp NEMA 12 M5 NEMA 1 M6 Protected amp NEMA 12 1 5 M6 NEMA 1 M7 Chassis amp NEMA 12 M7 NEMA 1 M8 Chassis amp NEMA 12 M8 NEMA 1 M9 Chassis amp NEMA 12 M9 NEMA 1 M10 Chassis amp NEMA 12 M10 NEMA 1 M11
279. orque equal to that of acceleration See the separate Brake resistor installation manual Start function Ramp 0 The drive starts from 0 Hz and accelerates to the set reference frequency within the set acceleration time Load inertia or starting friction may extend the acceleration times Flying start 1 The drive starts into a running motor by first finding the speed the motor is running at Searching starts from the maximum frequency down until the actual frequency reached The output frequency then accelerates decelerates to the set reference value at a rate determined by the acceleration deceleration ramp parameters Use this mode if the motor may be coasting when the start command is given With the flying start it is possible to ride through short utility voltage interruptions Stop function Coasting 0 The motor coasts to an uncontrolled stop with the CX CXL CXS off after the Stop command Ramp 1 After the Stop command the speed of the motor is decelerated according to the deceleration ramp time parameter If the regenerated energy is high it may be necessary to use an external braking resistor for faster deceleration DC braking current Defines the current injected into the motor during the DC braking DC braking time at stop Defines if braking is ON or OFF and the braking time of the DC brake when the motor is stopping The function of the DC brake depends on the stop function parameter 4 7 See figure 4 5 15
280. otection fully programmable Motor Underload protection Free analog input functions 12 7 Pump and Fan Control Application The Pump and Fan Control Application can be used to control one variable speed drive and 0 3 auxiliary drives The Pl controller of the frequency converter controls the speed of the variable speed drive and gives control signals to Start and Stop auxiliary drives to control the total flow The application has two control sources on I O terminal Source A is Pump and fan control and source B is direct frequency reference The control source is selected with DIB6 input All outputs are freely programmable Other additonal functions Programmable Start stop and reverse signal logic Analog input signal range selection Two frequency in band limit indications Torque in band limit indication Reference in band limit indication Second set of ramps and choice of linear or S curve DC braking at start and stop Three prohibit frequency lockout ranges Programmable V Hz curve and switching frequency Autorestart function Motor Thermal and Stall protection fully programmable Motor Underload protection Page 83 84 Options 13 Options 13 1 External filters Information of CX CXL CXS external input and output filters RFI dV dT and Sinusoidal filters can be found in their separate manuals 13 2 Dynamic braking Effective motor braking and short deceleration t
281. p 0 No automatic restart after temperature fault 1 Automatic restart after heatsink temperature has returned to its normal level between 10 C 75 C Notes Page 3 37 Multi step Speed Control Application Notes Page 3 38 Pl control Application PI CONTROL APPLICATION par 0 1 5 CONTENTS 4 Pl control Application 0008 4 1 4 1 General sicvoicsexteciieeblemteareds iceene 4 2 4 2 Control NO wcrgehes ceca coe ete toteccces 4 2 4 3 Control signal logic ece 4 3 4 4 Parameters Group 1 eee 4 4 4 4 1 Parameter table 4 4 4 5 4 6 4 7 4 4 2 Description of Group1 par 4 5 Special parameters Groups 2 8 4 8 4 5 1 Parameter tables 4 8 4 5 2 Description of Groups 4 15 Panel reference c cccceeeseeees 4 36 Monitoring data 1 0 0 eee 4 36 Page 4 1 Pl control Application 4 1 General In Pl control application there are two I O terminal control sources Source A is the PI controller and source B is the direct frequency reference The control source is selected with DIB6 input The Pl controller reference can be selected from an analog input motorized digital potentiometer or panel reference The actual 4 2 C
282. p warning Reference warning analogue input lt 4 mA External warning ENTER button Button number Button Function name Feedback information 0 1 b1 Reverse Changes the direction of motor rotation Active only if the panel is the active control source Direction command forward Feedback information flashes as long as direc tion is different from the command Direction command backward Active control source Selects the active control source between the panel and I O terminals Control via I O terminals Control from the Control Panel Clear trip operating hour counter Clears the trip operating when pressed No clearing Clearing accepted Clear trip MWh counter Clears the MWh trip counter when pressed No clearing Clearing accepted CONTENTS CX CXL CXS USERS MANUAL T oalet ea a Les ened eeceann Sees 2 2 gt IDRC CHIVES es gss gs i5 hoe deni naaks k pse ssie 4 SB ROCOIVING sardapentveestecudet atai an 5 4 Technical Gate cis ceresi Liectes Momeneeneneaatts 7 5 Installation seeen 18 6 WIIG aion eaea 24 7 Control panel ccsectessevzachevecetsevectieetteeiswe 56 Or OLAS EEE EEA I ate E 68 9 Faulttracing esses obeca ors eter aah eteaeeeiees 71 10 Basic application lt 2s cs eiieeecceccaceeastete 73 11 System parameter group 0 eeeee 80 12 Application package eee 82 TS Options eae o eet essence EES 84
283. per in use 2 External brake chopper 4 6 Start function 0 1 1 0 0 Ramp 5 27 1 Flying start 4 7 Stop function o 1 1 0 0 Coasting 5 27 1 Ramp 4 8 DC braking current 0 15 1 5 0 1 A 0 5 x Incx 5 27 x Incx A 9 DC braking time at Stop 0 00 250 00s 0 01 s 0 00s 0 DC brake is off at Stop 5 28 10 Execute frequency of DC 0 1 10 0 Hz 0 1 Hz 1 5 Hz 5 29 brake during ramp Stop 4 11 DC brake time at Start 0 00 25 00s 0 01s 0 00 s 0 DC brake is off at Start 5 29 4 12 Multi step speed fmin fmax 0 1 Hz 10 0 Hz 5 29 reference 1 1 1 1 2 4 13 Multi step speed fmin fmax 0 1 Hz 15 0 Hz 5 29 reference 2 1 1 1 2 4 14 Multi step speed fmin fmax 0 1 Hz 20 0 Hz 5 29 reference 3 1 1 1 2 4 15 Multi step speed fmin fmax 0 1 Hz 25 0 Hz 5 29 reference 4 1 1 1 2 4 16 Multi step speed fmin fmax 0 1 Hz 30 0 Hz 5 29 reference 5 1 1 1 2 4 17 Multi step speed fmin fmax 0 1 Hz 40 0 Hz 5 29 reference 6 1 1 1 2 4 18 Multi step speed fmin fmax 0 1 Hz 50 0 Hz 5 29 reference 7 1 1 1 2 Note Parameter value can be changed only when the drive is stopped Page 5 12 Multi purpose Control Application Group 5 Prohibit frequency parameters Code Parameter Range Step Default Custom Description Page 5 1 Prohibit frequency fmin 0 1 Hz 0 0 Hz 5 29 range 1 low limit par 5 2 5 2 Prohibit frequen
284. plication 6 1 Motor control mode 0 Frequency control The I O terminal and panel references are frequency ref V Hz erences and the drive controls the output frequency out put freq resolution 0 01 Hz 1 Speed control The I O terminal and panel references are speed refer sensorless vector ences and the drive controls the motor speed control accuracy 0 5 Switching frequency Motor noise can be minimized by using a high switching frequency Increasing the switching frequency reduces the current capacity of the CX CXL CXS Before changing the frequency from the factory default 10 kHz 3 6 kKHz_ gt 40 Hp check the drive derating in the curves shown in figures 5 2 2 and 5 2 3 in chapter 5 2 of the User s Manual Field weakening point Voltage at the field weakening point The field weakening point is the output frequency where the output voltage reaches the set maximum value parameter 6 4 Above that frequency the output voltage remains constant at the set maximum value Below that frequency the output voltage depends on the setting of the V Hz curve parameters 1 8 1 9 6 5 6 6 and 6 7 See figure 1 5 16 When the parameters 1 10 and 1 11 nominal voltage and nominal frequency of the motor are set parameters 6 3 and 6 4 are also set automatically to the same values If you need different values for the field weakening point and the maximum output voltage change these parameters after setting parameters 1
285. pplication Analog output Content See table on page 4 10 Analog output filter time Filters the analog output signal See figure 4 5 9 Figure 4 5 9 Analog output filtering Analog output invert Inverts analog output signal max output signal minimum set value min output signal maximum set value Figure 4 5 10 Analog output invert Analog output minimum Defines the signal minimum to be either 0 mA or 4 mA See figure 4 5 9 Analog output scale Scaling factor for analog output See figure 4 5 11 Signal Max value of the signal Output Max frequency p 1 2 frequency Motor speed Max speed n xf 4 f Output 2 x laicx current Motor torque 2X Tans Motor power 2 x Pant Motor voltage 100 x V Mot DC link volt 1000 V Figure 4 5 11 Analog output scale A Unfiltered signal 100 Filtered signal 68 1 oot st Knee oe ee ees l l l i i l l l t s gt Par 3 2 lt _ _ gt UDOO09K16 A Analog output current 20 MA twee bose an i Ss l tee i P l Tee I ae ON a a a 1 E a Spri Iain Se ee z Param 3 5 A 50 Imar EAN ASERNE SS Se SSS Param 3 5 1009 ye ene es cia agile 100 t 1 Param 3 5 Selected para 3 1 1 200 signal max value 0 mA gt 0 0 5 1 0 Ch012K17 A Analog output Param 3 5 Param 3 5 current 200 100 Paiol S SS SSS eS
286. pplication Parameter Default Custom Description Multi step speed reference 1 Multi step speed reference 2 Multi step speed reference 3 Multi step speed reference 4 Multi step speed reference 5 Multi step speed reference 6 Multi step speed reference 7 Table 3 4 1 Group 1 basic parameters 3 4 2 Description of Group 1 parameters 1 1 1 2 Minimum maximum frequency Defines the frequency limits of the drive The default maximum value for parameters 1 1 and 1 2 is 120 Hz By setting 1 2 120 Hz in the when the drive is stopped RUN indicator not lit parameters 1 1 and 1 2 are changed to 500 Hz At the same time the resolution of the panel reference is changed from 0 01 Hz to 0 1 Hz Changing the max value from 500 Hz to 120 Hz is done by setting parameter 1 2 to 119 Hz while the drive is stopped 1 3 1 4 Acceleration time 1 deceleration time 1 These limits correspond to the time required for the output frequency to accelerate from the set minimum frequency par 1 1 to the set maximum frequency par 1 2 Acceleration deceleration times can be reduced with a free analog input signal see parameters 2 18 and 2 19 1 5 Basic reference selection 0 Analog voltage reference from terminals 2 3 e g a potentiometer 1 Analog current reference trom terminals 4 5 e g a transducer 1 6 Jog speed refrence The value of this parameter defines the jog
287. programmable V Hz curve has been selected with parameter 1 8 this parameter defines the middle point frequency of the curve See figure 4 5 19 V Hz curve middle point voltage If the programmable V Hz curve has been selected with parameter 1 8 this parameter defines the middle point voltage of motor nominal voltage of the curve See figure 4 5 19 Output voltage at zero frequency If the programmable V Hz curve has been selected with parameter 1 8 this parameter defines the zero frequency voltage of the curve See figure 4 5 19 ULV Default nominal voltage of the motor Parameter 6 4 Field weakening point Parameter 6 6 Default 10 Default nominal frequency of the motor Parameter 6 7 Default 1 3 Parameter 6 5 Parameter 6 3 f Hz Default 5 Hz Figure 4 5 19 Programmable V Hz curve Overvoltage controller Undervoltage controller These parameters allow the over undervoltage controllers to be switched ON or OFF This may be useful in cases where the utility supply voltage varies more than 15 10 and the application requires a constant speed If the controllers are ON they will change the motor speed in over undervoltage cases Overvoltage faster undervoltage slower Over undervoltage trips may occur when the controllers are not used Page 4 28 7 1 7 2 7 3 7 4 Pl control Application Response to the reference fault 0 No response 1 W
288. put frequency output frequency resolution 0 01 Hz 1 Speed control The I O terminal and panel references are speed references and the drive controls the motor speed sensorless vector regulation accuracy 0 5 Page 5 29 6 2 DO A Q 6 5 6 6 6 7 Multi purpose Control Application Switching frequency Motor noise can be minimized using a high switching frequency Increasing the switching frequency reduces the capacity of the CX CXL CXS Before changing the frequency from the factory default 10 kHz 3 6 kHz gt 40 Hp check the drive derating from the curves in figures 5 2 2 and 5 2 3 in the User s Manual Field weakening point Voltage at the field weakening point The field weakening point is the output frequency at which the output voltage reaches the set maximum value par 6 4 Above this frequency the output voltage remains at the set maximum value Below that frequency the output voltage depends on the setting of the V Hz curve parameters 1 8 1 9 6 5 6 6 and 6 7 See figure 5 5 22 When the parameters 1 10 and 1 11 nominal voltage and nominal frequency of the motor are set parameters 6 3 and 6 4 are also set automatically to the corresponding values If you need different values for the field weakening point and the maximum output voltage change these parameters after setting parameters 1 10 and 1 11 V Hz curve middle point frequency If the programmable V Hz curve has
289. put Hz Output Hz frequency frequency Max freq par 1 2 Par 2 28 Par 2 27 Analog 1 Analog Min freq par 1 1 input V Min freq par 1 1 1 input V 4 gt gt 0 10 0 10 h012K35 Figure 6 5 5 Reference scaling Figure 6 5 6 Reference scaling par 2 15 0 Page 6 20 3 1 3 2 3 3 3 4 3 5 Pump and fan control Application Analog output function See table on page 6 10 Analog output filter time Filters the analog output signal See figure 6 5 7 Figure 6 5 7 Analog output filtering Analog output invert Inverts analog output signal max output signal minimum set value min output signal maximum set value Figure 6 5 8 Analog output invert Analog output minimum Defines the signal minimum to be either 0 mA or 4 mA See figure 6 5 9 Analog output scale Scaling factor for analog output See figure 6 5 9 Signal Max value of the signal Output freq Max frequency p 1 2 Motor speed Max speed n xf f Output 2 x Incx current Motor torque 2 xX TaMot Motor power 2 x Pinot Motor voltage 100 x V Mot DC link volt 1000 V Pl ref value 100 x ref value max Pl act value1 100 x act value max Pl act value2 100 x act value max Pl error value 100 x error value max Pl output 100 x output max Figure 6 5 9 Analog output scale A Unfiltered signal 100 Filte
290. quency par 1 1 to the set maximum frequency par 1 2 With this parameter it is possibile to set two different acceleration deceleration times for one application The active set can be selected with the programmable signal DIA3 See parameter 2 2 Brake chopper 0 No brake chopper 1 Brake chopper and brake resistor installed 2 External brake chopper When the drive is decelerating the motor the energy stored in the inertia of the motor and the load is fed into the external brake resistor If the brake resistor is selected correctly the drive is able to decelerate the load with a torque equal to that of acceleration See the separate Brake resistor installation manual Start function Ramp 0 The drive starts from 0 Hz and accelerates to the set reference frequency within the set acceleration time Load inertia or starting friction may extend the acceleration times Page 1 17 Standard Application Flying start 1 The drive starts into a running motor by first finding the speed the motor is running at Searching starts from the maximum frequency down until the actual frequency reached The output frequency then accelerates decelerates to the set reference value at a rate determined by the acceleration deceleration ramp parameters Use this mode if the motor may be coasting when the start command is given With the flying start it is possible to ride through short utility voltage interruptions 4 7 Stop funct
291. r 1 A Torque limit 7 Analog input v Signal range 10V 0 mA 20 mA UD012K61 4mA 20 mA Custom Custom Figure 3 5 13 Reducing of max motor current Page 3 20 Multi step Speed Control Application A DC braking current 2 Reducing DC brake current DC braking current can be Paras reduced with the free analog input signal between current 0 15 x Insyg and current set by the parameter 4 8 See figure 3 5 14 Free analog 0 15 x Insvg input gt 0 Signal range UD012K58 Figure 2 5 14 Reducing DC brake current 3 Reducing acceleration and deceleration times Factor R Acceleration deceleration times can be reduced with a free analog input signal according to the following formulas Reduced time set acc deceler time par 1 3 1 4 4 3 4 4 divided by the factor R from the figure 3 5 15 Figure 3 5 15 Reducing acceleration Signal range and deceleration times Free analog input Ch012K59 4 Reducing torque supervision A limit Torque limit Torque supervision limit can 8 44 be reduced with a free analog input signal between 0 and set supervision limit par 3 14 see figure 3 5 16 Free analog input ignal 0 Signal range Cho12k60 Figure 3 5 16 Reducing torque supervision limit Page 3 21 Multi step Speed Control Application
292. r 3 11 and 3 12 The motor torque goes outside of the set supervision Low limit High limit par 3 13 and 3 14 Active reference goes outside of the set supervision Low limit High limit par 3 15 and 3 16 External brake ON OFF control with programmable delay par 3 17 and 3 18 External control mode selected with prog push button 2 Temperature on drive goes outside the set supervision limits par 3 19 and 3 20 Rotation direction of the motor shaft is different from the requested one External brake ON OFF control par 3 17 and 3 18 output active when brake control is OFF Table 3 5 2 Output signals via DO1 and output relays RO1 and RO2 Output frequency limit 1 supervision function Output frequency limit 2 supervision function 0 No supervision 1 Low limit supervision 2 High limit supervision If the output frequency goes under over the set limit 3 10 3 12 this function generates a warning message via the digital output DO1 or via a relay output RO1 or RO2 depending on the settings of the parameters 3 6 3 8 Output frequency limit 1 supervision value Output frequency limit 2 supervision value The frequency value to be supervised by the parameter 3 9 3 11 See figure 3 5 20 Page 3 23 Multi step Speed Control Application 3 13 Torque limit supervision function 0 No supervision 1 Low limit supervision ae Ree 2 High limit supervision If the calculated to
293. r stall protection Check motor A16 Motor overtemperature Motor thermal protection Decrease motor loading A17 Motor underload Warning can be activated in Appli Check motor loading cation manual applications A24 The values in the Fault History MWh counters or op No actions necessary Take a erating day hour counters might have been changed critical attitude to these values in the previous mains interruption A28 The change of application has failed Choose the application again and push the Enter button A30 Unbalance current fault the load of the segments is Contact your Honeywell affiliate not equal A45 The frequency converter overtemperature warning Check the cooling air flow and the Temperature gt 70 C ambient temperature A46 Reference warning the current of input lin lt 4 MA Check the current loop circuitry Warning can be activated in Application manual applications A47 External warning Warning can be activated in Check the external fault circuit or Application manual applications device Table 7 4 Warning codes Page 66 84 Control panel 7 11 Controlling the motor from the front panel The CX CXL CXS can be controlled from either the I O terminals or the control panel The active control source can be changed with the programmable push button b2 see chapter 7 6 The motor can be started stopped and the direction of rotation can be changed from the active control source 7 11
294. r value of the Pl controller and thus the the operation of the Pl controller 2 24 Pl controller minimum limit 2 25 Pl controller maximum limit These parameters set the minmum and maximum values of the Pl controller output Parameter value limits par 1 1 lt par 2 24 lt par 2 25 2 26 Direct frequency reference Place B 0 Analog voltage reference from terminals 2 3 e g a potentiometer 1 Analog current reference trom terminals 4 5 e g a transducer 2 Panel reference is the reference set from the Reference Page REF Reference r1 is the Place B reference see chapter 6 3 Reference value is changed with digital input signals DIA2 and DIAS switch in DIA2 closed frequency reference increases switch in DIA3 closed frequency reference decreases Speed of the reference change can be set with the parameter 2 3 4 Same as setting 3 but the reference value is set to the minimum frequency par 1 1 each time the drive is stopped When the value of parameter 1 5 is set to 3 or 4 the value of parameter 2 1 is automatically set to 4 and the value of parameter 2 2 is automatically set to 10 2 27 Place B reference scaling minimum value maximum value 2 28 Setting limits 0 lt par 2 27 lt par 2 28 lt par 1 2 If par 2 28 0 scaling is set off See figures 6 5 5 and 6 5 6 In the figures below the voltage input V with signal range 0 10 V is selected for source B reference Out
295. rake is off at Stop 6 25 4 10 Turn on frequency of DG 0 1 10 0 Hz 0 1 Hz 1 5 Hz 6 27 brake during ramp Stop 4 11 DC brake time at Start 0 00 25 00s 0 01s 0 00s 0 DC brake is off at Start 6 27 4 12 Jog speed reference fmin fmax 0 1 Hz 10 0 Hz 6 27 1 1 1 2 Group 5 Prohibit frequency parameters Code Parameter Range Step Default Custom Description Page 5 1 Prohibit frequency fmin 0 1 Hz 0 0 Hz 6 27 range 1 low limit par 5 2 5 2 Prohibit frequency fmin fmax 0 1 Hz 0 0 Hz 0 No prohibit frequency range 6 27 range 2 high limit 1 1 1 2 5 3 Prohibit frequency fmin 0 1 Hz 0 0 Hz 6 27 range 2 low limit par 5 4 5 4 Prohibit frequency fmin tmax 0 1 Hz 0 0 Hz 0 No prohibit frequency range 6 27 range 2 high limit 1 1 1 2 5 5 Prohibit frequency fmin 0 1 Hz 0 0 Hz 6 27 range 3 low limit par 5 6 5 6 Prohibit frequency fmin tmax 0 1 Hz 0 0 Hz 0 No prohibit frequency range 6 27 range 3 high limit 1 1 1 2 Group 6 Motor control parameters Code Parameter Range Step Default Custom Description Page 6 1 Motor control mode 0 1 1 0 0 Frequency control 6 27 1 Speed control 6 2 Switching frequency 1 0 16 0 kHz 0 1 kHz 10 3 6kHz Depends on Hp rating 6 28 6 3 Field weakening O 30 500 Hz 1 Hz Param 6 28 1 11 6 4 Voltage at field 15 200 1 100 6 28 weakening point X Vamot 6 5 V Hz curve mid 0 0 fmax 0 1 Hz 0 0 Hz 6 28 point
296. re Par 8 17 toy Par 3 18 stop control signals with these a cas Z ak parameters See figure 3 5 21 oOo Tooo E The brake control signal can be ae a programmed via the digital output pa DO1 or via one of the relay gt outputs RO1 and RO2 see Gatis parameters 3 6 3 8 b torp Par 3 17 toy Par 3 18 External ae Figure 3 5 21 External brake control fee aes ET a Start Stop logic selection DIA1 START par 2 1 0 1or2 PULSE b Start Stop logic selection A par 2 1 3 PULSE Page 3 24 Multi step Speed Control Application 3 19 Drive temperature limit supervision 0 No supervision 1 Low limit supervision 2 High limit supervision If the temperature of the unit goes under over the set limit 3 20 this function generates a warning message via the digital output DO1 or via a relay output RO1 or RO2 depending on the settings of the parameters 3 6 3 8 3 20 Drive temperature limit value The temperature value to be supervised by the parameter 3 19 Acc Dec ramp 1 shape Acc Dec ramp 2 shape BS N The acceleration and deceleration ramp shape can be programmed with these parameters Setting the value 0 gives you a linear ramp shape The output frequency immediately follows the input with a ramp time set by parameters 1 3 1 4 4 3 4 4 for Acc Dec time 2 Setting 0 1 10 seconds for 4 1 4 2 causes an S shaped ramp Hz The sp
297. re changed to 500 Hz At the same time the resolution of the display panel is changed from 0 01 Hz to 0 1 Hz Changing the max value from 500 Hz to 120 Hz in done by setting parameter 1 2 to 119 Hz while the drive is stopped 1 3 1 4 Acceleration time1 deceleration time 1 These limits correspond to the time required for the output frequency to accelerate from the set minimum frequency par 1 1 to the set maximum frequency par 1 2 1 5 1 6 Multi step speed reference 1 Multi step speed reference 2 Par 1 6 Ref Vin _ i Par 1 17 0 i l i Par 1 577 Rak f l a ss l 1 1 t Run l l DIB4 Stop i I DB5 BY seems Stop Ch009K06 Figure 1 4 1 Example of Multi step speed references Parameter values are automatically limited between minimum and maximum frequency par 1 1 1 2 1 7 Current limit This parameter determines the maximum motor current that the CX CXL CXS will provide short term 1 8 V Hz ratio selection Linear The voltage of the motor changes linearly with the frequency in the 0 constant flux area from 0 Hz to the field weakening point par 6 3 where a constant voltage nominal value is supplied to the motor See figure 1 4 2 A linear V Hz ratio should be used in constant torque applications This default setting should be used if there is no special requirement for another setting Page 1 5 Standard Application Squared Th
298. red signal 68 Hebe te fuel Sen eS ccm Gees l l l i i l l l t s gt Par 3 2 lt gt UD009K16 A Analog output current WiMAsheo SSH S s SSeS Se SS sissiog sig 1 cs i tee os i a i aT l BE N eR aa is TAMA SEES l Param 3 5 i 50 10mA4 eRe NE Se Se eS Param 3 5 1009 Wie ble aay nae lt TL 100 l l Param 3 5 Selected para 3 1 1 200 1 Signal max value OmA gt 0 0 5 1 0 Ch012K17 A Analog output Param 3 5 Param 3 5 current 500 ee 20 MAHE AHH Se Get ee i TAMA SSG it gfe oe paren Param 3 5 50 10mMA 4 fat fR anett HH Hs Par 3 4 1 4mA 477 Max value of signal Par 3 4 0 selected by param 3 1 OmA t 4 gt 0 0 5 1 0 Ch012K18 Page 6 21 3 6 3 7 3 8 ww Pump and fan control Application Digital output function Relay output 1 function Relay output 2 function Setting value Signal content 0 Not used Ready Run Fault Fault inverted CX overheat warning External fault or warning Reference fault or warning NORWOOD 8 Warning 9 Reversed 10 Multi step or jog speed 11 At speed 12 Motor regulator activated 13 Output frequency supervision 1 14 Output frequency supervision 2 15 Torque limit supervision 16 Active reference limit supervision 17 External brake control 18 Control from I O terminals 19 Drive temperature limit
299. refer to the type designation code in figure 3 1 Note Do not destroy the packing The template printed on the protective cardboard can be used for marking the mounting points In the event of damage please contact and file of the CX CXL CXS on the wall a claim with the carrier involved immediately 3 1 Type designation code CX x 0750HP V 3 4 A 2 N O Product Series CX CXL CXS e g 0015 HP 1 5 Hp 0015 1 5 kW 0750 HP 75 Hp 0750 75 kW 9000 HP 900 Hp 9000 900 kW 10000 HP 1000 Hp 10000 1000 kW Voltage Phase 1 or 3 Voltage 2 230V 3 phase 4 380V 5 480V 6 600V Panel A 7 segment LED Display B Graphic LCD Display G Alphanumerical Display C without local control panel D special equipped switches etc IP 0 chassis IP00 2 Series CX CXL protected chassis IP20 Serie CXS compact NEMA 1 IP20 5 NEMA 12 IP54 7 NEMA 1 IP21 RFI C I N no internal Filter Brake 1 built in brake 0 no brake in pump and fan applications variable torque the nominal power of the unit is one size larger see section 4 2 480 V units are rated in Hp 380 V units are rated in kW Figure 3 1 Type designation code Page 11 84 Receiving 3 2 Storing If the CX CXL CXS must be stored before installation and startup check that the ambient conditions in the storage area are acceptable temper
300. rence fault 1 Warning 2 Fault stop according to par 4 7 3 Fault always coasting stop 7 2 Response to 0 3 1 2 0 No action 3 30 external fault 1 Warning 2 Fault stop according to par 4 7 3 Fault always coasting stop 7 3 Phase supervision of 0 2 2 2 0 No action 3 30 the motor 2 Fault 7 4 Ground fault protection 0 2 2 2 0 No action 3 31 2 Fault 7 5 Motor thermal protection 0 2 1 2 0 No action 3 31 1 Warning 2 Fault 7 6 Motor thermal protection 50 0 150 0 1 0 100 0 3 32 break point current X InmoTOR 7 7 Motor thermal protection 5 0 150 0 1 0 45 0 3 32 zero frequency current X InmoTOR 7 8 Motor thermal protection 0 5 300 0 0 5 17 0 Default value is set according 3 33 time constant minutes min min to motor nominal current 7 9 Motor thermal protection 10 500 Hz 1 Hz 35 Hz 3 33 break point frequency 7 10 Stall protection 0 2 1 1 0 No action 3 34 1 Warning 2 Fault 7 11 Stall current limit 5 0 200 0 1 0 130 0 3 34 X InMOTOR 7 12 Stall time 2 0 120 0s 1 0s 15 0s 3 34 7 13 Maximum stall frequency 1 fmax 1 Hz 25 Hz 3 34 7 14 Underload protection 0 2 1 0 0 No action 3 35 1 Warning 2 Fault 7 15 Underload prot field 10 0 150 0 1 0 50 0 3 35 weakening area load X ThMOTOR 7 16 Underload protection 5 0 150 0 1 0 10 0 3 35 zero frequency load X TaMoTOR 7 17 Underload time 2 0 600 0s 1 0s 20 0s
301. requency converter has exceeded the nominal voltage by 35 deceleration time is too fast high overvoltage spikes at utility Adjust the deceleration time F3 Ground fault Current measurement detected that the sum of the Check the motor cables motor phase current is not zero insulation failure in the motor or the cables F4 Inverter fault interference fault component failure The frequency converter has detected faulty opera tion in the gate drivers or IGBT bridge Reset the fault and restart again If the fault occurs again contact your Honeywell affiliate F5 Charging switch interference fault component failure Charging switch open when START command active Reset the fault and restart again If the fault occurs again contact your Honeywell affiliate F9 Undervoltage voltage cause an undervoltage trip DC bus voltage has gone below 65 of the nominal most common reason is failure of the utility supply internal failure of the frequency converter can also In case of temporary supply voltage break reset the fault and start again Check utility input If utility supply is correct and internal failure has occurred Contact your Honeywell affiliate F10 Input line supervi Input line phase is missing Check the utility connection sion F11 Output phase su Current measurement has detected that there is no Check motor cables pervision current in one motor phase F12 Bra
302. requency value to be supervised by the parameter 3 15 3 17 External brake off delay 3 18 External brake on delay The function of the external brake can be delayed from the start and stop control signals with these parameters See figure 4 5 13 The brake control signal can be programmed via the digital output DO1 or via one of the relay outputs RO1 and RO2 see parameters 3 6 3 8 3 19 Drive temperature limit supervision 0 No supervision 1 Low limit supervision 2 High limit supervision If the temperature of the drive goes under over the set limit 3 20 this function generates a warning message via the digital output DO1 or via a relay output RO1 or RO2 depending on the settings of the parameters 3 6 3 8 3 20 Drive temperature limit value The temperature value to be supervised by parameter 3 19 Page 4 23 Be N AiR bw Pl control Application a torr Par 3 17 BE ton Par 3 18 TES External 1 BRAKE OFF I 1 Digital or ON i i relay output i DIA1 RUN FWD STOF DIA2 RUN REV STOP t a UDO12K45 b torr Par 3 17 ton Par 3 18 External BRAKE OFF i ON i i i i DIA1 START PULSE i i t Digital or relay output DIA2 STOP PULSE p Figure 4 5 13 External brake control a Start Stop logic selection par 2 1 0 1 or 2 b Start Stop logic selection par 2 1 3 Acc Dec ramp 1 shape Acc Dec ramp 2 shape Th
303. rload time This time can be set between 2 0 600 0 s This is the maximum allowed time for an underload state There is an internal up down counter to accumulate the underload time Refer to the figure 6 5 23 If the underload counter value goes above this limit the protection will cause a trip refer to the parameter 7 14 If the drive is stopped the underload counter is reset to zero Page 6 34 9 p N Pump and fan control Application A Underload time counter Trip area Par 7 17 A Trip warning Par 7 14 I I I I UMCH7_17 Time gt Figure 6 5 23 Counting the under Underl 7 No underl load time Automatic restart number of tries Automatic restart trial time The Automatic restart function restarts the drive after the faults selected with parameters 8 4 8 8 The Start function for Automatic restart is selected with parameter 8 3 Parameter 8 1 determines how many automatic restarts can be made during the trial time set by the parameter 8 2 The time counting starts from the first autorestart If the number of restarts does not exceed the value of parameter 8 1 during the trial time the counting is cleared after the trial time has elapsed The next fault starts the counting again See figure 6 5 24 A Number of faults during t ttrial Hae o trial trial 34 24 M4 Par 8 1 3 ale l ttrial Par 8 2 t gt Three faults Four faults se S U
304. ronics but their EMC properties vary as follows CX level N The frequency converters level N do not fulfill any EMC emmission demands without a separate RFI filter With an external RFI filter the product fulfill the EMC emmissions demands in the heavy industrial environment EN50081 2 CXL CXS level I The frequency converters level fulfill the EMC emmissions requirements in the heavy industrial environment EN50081 2 CXL CXS level C The frequency converters level C fulfill the EMC emmission requirements in the commercial residential and light industrial environment 50081 1 2 widest range of use All products level N C fulfill all EMC immunity requirements EN50082 1 2 and EN61800 3 2 2 4 Manufacturer s Declarations of Conformity Following are copies of the Manufacturer s Declarations of Conformity which show conformity with the directives for drives with different EMC levels 2 3 UL label The EXCEL VRL frequency converters are UL listed according to the standards based on the needed voltage and power range For more information contact you local Honeywell distributor More information of cable selection and installation can be found from chapter 6 1 4 1 Page 4 84 Directives EU DECLARATION OF CONFORMITY We Manufacturer s Name Vaasa Control Manufacturer s Address P O BOX 25 Runsorintie 7 FIN 65381 VAASA Finland hereby declares that the product Produc
305. roup 1 eee 1 4 1 4 1 Parameter table 0 1 4 1 4 2 Description of Group1 par 1 5 1 5 Special parameters Groups 2 8 1 8 1 5 1 Parameter tables 1 8 1 5 2 Description of Groups 1 12 Page 1 1 Standard Application 1 STANDARD APPLICATION 1 1 General The Standard application has the same I O signals and same Control logic as the Basic application Digital input DIA3 and all outputs are programmable The Standard Application can be selected by setting the value of parameter 0 1 to 2 Basic connections of inputs and outputs are shown in the figure 1 2 1 The control signal logic is shown in the figure 1 3 1 Programming of I O terminals is explained 1 2 Control I O Reference potentiometer Terminal in chapter 1 5 Signal Description 10V oi Reference output Voltage for a potentiometer etc Vin Analog input voltage range 0 10 V DC Frequency reference if activated if terminals 14 and 15 open and para meter 1 17 0 default value I O ground Ground for reference and controls Analog input current range 0 20 mA Frequency reference activated if terminals 14 and 15 closed or open and parameter 1 17 1 Control voltage output Voltage for switches etc max 0 1 A I O ground Ground for reference and controls Start forward Programmable Contact closed start forward Start reverse Progr
306. rque value goes EA Seen E E RTS 4 under over the set limit 3 14 this function generates a warning message via the digital output DO1 or via a relay output RO1 or RO2 depending on the settings of Example 54 RO uDooski9 t gt 21 RO1 21 RO1 the parameters 3 6 3 8 22 Ro 22 ROW 22 RO 23 RO1 23 RO1 23 RO1 2 Figure 3 5 20 Output frequency supervision 3 14 Torque limit supervision value The calculated torque value to be supervised by the parameter 3 13 Torque supervision value can be reduced below the setpoint with al free analog input signal see parameters 2 18 and 2 19 3 15 Reference limit supervision function 0 No supervision 1 Low limit supervision 2 High limit supervision If reference value goes under over the set limit 3 16 this function generates a warning message via the digital output DO1 and via a relay output RO1 or RO2 depending on the settings of the parameters 3 6 3 8 The supervised reference is the current active reference It can be source A or B reference depending on DIB6 input or panel reference if panel is the active control source 3 16 Reference limit supervision value The frequency value to be supervised by the parameter 3 15 3 17 External brake off delay 3 18 External brake on delay The function of the external brake a can be delayed from the start and to
307. rrent Relay output 1 21 A open Relay output 2 24 open Figure 7 6 Output signal status Page 59 84 Control panel 7 4 Parameter group menu The parameter group menu can be entered from the main menu when the symbol M2 is visible on the first line of the Alpha numeric display Parameter values are changed in the parameter menu as shown in Figure 7 6 Push the menu button once to move into the parameter group menu G and twice to enter the desired parameter menu Locate the parameter you want to change by using the browser buttons Push the menu button S once again to enter the edit menu Once you are in the edit menu the symbol of the parameter starts to blink Set the desired new value with the browser buttons and confirm the change by pushing the Enter button Consequently the blinking stops and the new value is visible in the value field The value will not change unless the Enter button is pushed You can go back by pressing the menu button Several parameters are locked i e uneditable when the drive is in RUN status If you try to change the value of such a parameter the text ockea will appear on the display You can return to the main menu anytime by pressing the Menu button E for 2 3 seconds The basic application embodies only those parameters necessary for operating the device The parameter group 0O is accessible only by opening the Application package lock See
308. rter has to be tested on a motor connected to the process ensure it is safe to be powered up Inform all possible co workers about the tests switch the utility power OFF and wait until the CX CXL CXS has powered down according to chapter 8 1 point 4 connect the motor cable to the motor and the power terminals of the CX CXL CXS check that all start stop switches connected to the I O terminals are in the OFF state switch the utility power ON repeat test A or B of the test 8 10 Connect the motor to the process if the previous tests were done without the process ensure it is safe to power up inform all possible co workers about the tests repeat test A or B of the test 8 Page 70 84 Fault tracing 9 FAULT TRACING When a fault trip occurs the fault indicator is illuminated and the fault code and its description are displayed The fault can be cleared with the Reset button or via an I O terminal The faults are stored to the fault history from where they can be viewed see chapter 7 8 The fault codes are explained in table 9 1 codes Overcurrent CX CXL CXS frequency converter has Check load measured too high a current gt 4 In in the Check motor size motor output Check cables sudden heavy load increase short circuit in the motor cables unsuitable motor Overvoltage The voltage of the internal DC link of the Adjust the deceleration CX CXL CXS frequency converter has time exceeded the nominal voltage by
309. s required to reverse 6 Jog speed contact closed Jog speed selected for freqency reference 7 Fault reset contact closed Resets all faults 8 Acc Dec contact closed Stops acceleration and deceleration until operation the contact is opened prohibited 9 DC braking contact closed Inthe stop mode the DC braking operates command until the contact is opened see figure 4 5 1 DC brake current is set with parameter 4 8 2 14 Motor potentiometer ramp time Defines how fast the electronic motor digital potentiometer value changes Page 4 18 NNN 16 17 18 19 20 21 22 23 Pl control Application Pl controller reference signal 0 1 2 Analog voltage reference from terminals 2 3 e g a potentiometer Analog current reference trom terminals 4 5 e g a transducer Panel reference is the reference set from the Reference Page REF Reference r2 is the Pl controller reference see chapter 4 7 Reference value is changed with digital input signals DIA2 and DIAS switch in DIA2 closed frequency reference increases switch in DIA3 closed frequency reference decreases Speed of the reference change can be set with the parameter 2 3 Same as setting 3 but the reference value is set to the minimum frequency par 1 1 each time the drive is stopped When the value of parameter 1 5 is set to 3 or 4 the value of parameter 2 1 is automatically set to 4 and value of the parameter 2
310. sabled motor and drive system Selecting 120 500 Hz range see page 5 5 Default value for a four pole motor and a nominal size drive Page 5 4 Multi purpose Control Application 5 4 2 Description of Group 1 parameters 1 1 1 2 Minimum maximum frequency Defines frequency limits of the drive The default maximum value for parameters 1 1 and 1 2 is 120 Hz By setting 1 2 120 Hz when the drive is stopped RUN indicator not lit parameters 1 1 and 1 2 are changed to 500 Hz At the same time the panel reference resolution is changed from 0 01 Hz to 0 1 Hz Changing the max value from 500 Hz to 120 Hz is done by setting parameter 1 2 119 Hz when the drive is stopped 1 3 1 4 Acceleration time 1 deceleration time 1 These limits correspond to the time required for the output frequency to accelerate from the set minimum frequency par 1 1 to the set maximum frequency par 1 2 1 5 Reference selection 0 Analog voltage reference from terminals 2 3 e g a potentiometer 1 Analog current reference trom terminals 4 5 e g a transducer 2 Reference is formed by adding the values of the analog inputs 3 Reference is formed by subtracting the voltage input V value from the current input l value 4 Reference is formed by subtracting the current input lip value from the voltage input Vp value 5 Reference is formed by multiplying the values of the analog inputs
311. set value Figure 5 5 13 Analog output invert Analog output minimum Defines the signal minimum to be either 0 mA or 4 mA See figure 5 5 14 Analog output scale Scaling factor for analog output See figure 5 5 14 Signal Max value of the signal Output fre Max frequency p 1 2 quency Motor speed Max speed n xf f Output 2 x laicx current Motor torque 2 X Tango Motor power 2 x Pant Motor voltage 100 x Vinjot DC link volt 1000 V Figure 5 5 14 Analog output scale A Unfiltered signal 100 Filtered signal oe ee eer eres ee ee reo i l l i l i l E i l t s i gt Par 3 2 4 UD009K16 A Analog output current OIA ester tein et ta ee tg aan Se a ee tema Param 3 5 50 LOA ee NG SI SS Se p 7 ay Param 3 5 NT E TEE D eet eee sm 100 Param 3 5 Selected para 3 1 1 200 1 signal max value 0 mA gt 0 0 5 1 0 Cho12K17 A Analog output Param 3 5 Param 3 5 current 200 100 20MAH HOSS See oe ee ee a TemA iy eas oe Param 3 5 50 TOMA fF iuw fF e Se a HHH ns Par 3 4 1 4mA Max value of signal Par 3 4 0 selected by param 3 1 OmA t gt 1 0 Ch012K18 Page 5 23 Multi purpose Control Application 3 6 3 7 3 8 ww Digital output function Relay output 1 function Relay output 2 function
312. so defined by this reference Output freq Max freq par 1 2 Start freq of the aux drive 2 Start freq of the aux drive 1 par 9 4 gt par 9 2 s Stop freq of the aux i Stop freq of the aux drive 2 par 9 5 drive 1 par 9 3 f Actual value gt Minimum freq par LI aa a x Maximum of the Minimum of the actual value actual value start Start stop control of the freq converter stop Auxiliary drive 1 stop start start Auxiliary drive 2 stoj Figure 6 5 28 Example of the function of variable speed drive and two auxiliary drives when Pl requlator is bypassed with parameter 9 20 Page 6 39 Pump and fan control Application 6 6 MONITORING DATA The Pl control application has additional items for monitoring n20 n25 See table 6 6 1 Data Data Unit Description number name vi Output frequency Hz Frequency to the motor v2 Motor speed rpm Calculated motor speed v3 Motor current A Measured motor current v4 Motor torque Calculated actual torque nominal torque of the unit v5 Motor power Calculated actual power nominal power of the unit v6 Motor voltage V Calculated motor voltage v7 DC link voltage V Measured DC link voltage v8 Temperature C Temperature of the heat sink v9 Operating day counter DD dd Operating days 1 not resettable v10 Operating hours
313. ssage is generated from the external fault signal on digital input DIAS The information can also be programmed into digital output DO1 and into relay outputs RO1 and RO2 Phase supervision of the motor 0 No action 2 Fault Phase supervision of the motor ensures that the motor phases have approximately equal current Ground fault protection 0 No action 2 Fault message Ground fault protection ensures that the sum of the motor phase currents is zero The standard overcurrent protection is always present and protects the frequency converter from ground faults with high current levels Parameters 7 5 7 9 Motor thermal protection General Motor thermal protection protects the motor from overheating The CX CXL CXS drive is capable of supplying higher than nominal current to the motor If the load requires this high current there is a risk that motor will be thermally overloaded This is true especially at low frequencies With low frequencies the cooling effect of the motor fan is reduced and the capacity of the motor is reduced If the motor is equipped with a separately powered external fan the load derating at low speed is small Motor thermal protection is based on a calculated model and it uses the output cur rent of the drive to determine the load on the motor When the motor is powered from the drive the calculated model uses the heatsink temperature to determine the initial thermal stage for the motor The calcul
314. st which is momentarily below the previous reference level See figure 6 5 25 Output frequency Hz Output frequency Hz Start delay of the aux drives par 9 10 Frequency i increase during the start delay Start freq of aux drive 1 par 9 2 1 Hz Start freq of aux drive 1 par 9 2 1 Hz Frequency after starting the aux drive1 is par 9 3 1 Hz Stop freq of aux drive 1 Frequency after Frequency decrease i starting the aux drive1 during the stop delay 4 is par 9 3 1 Hz ee freq 1 drive 1 par 9 3 1 Hz rin Stop delay of the aux Fmin gt drives par 9 11 Flow Flow Figure 6 5 25 Example of the effect of parameters in variable speed and one auxiliary drive system Page 6 37 Pump and fan control Application Reference step after start of the auxiliary drive 1 Reference step after start of the auxiliary drive 2 Reference step after start of the auxiliary drive 3 A reference step will automatically be added to the reference value when the corresponding auxiliary drive is started This allows compensation for the pressure loss in the piping caused by the increased flow See figure 6 5 26 Reference for Pl controller Reference step 3 par 9 14 Reference step 2 N par 9 13 Reference step 1 r 9 12 Reference analog input Time start Aux drive 1 stop start
315. stom signal span Unfiltered signal 100 63 4 t s gt Rar 2 10 3 UD009K37 Page 5 19 2 16 2 17 Multi purpose Control Application Analog input I custom setting minimum maximum With these parameters the scaling of the input current signal I range can be set between 0 20 mA Minimum setting Set the li signal to its minimum level select parameter 2 12 press the Enter button Maximum setting Set the signal to its maximum level select parameter 2 13 press the Enter button Note These parameters can only be set with this procedure not with arrow up arrow down buttons Unfiltered signal Analog input lip inversion oole Parameter 2 14 0 no inversion of l input Parameter 2 14 1 inversion of input Filtered signal 63 4 Analog input filter time Filters out disturbances from the incoming analog I signal t s gt i i i Par 2 15 A long filtering time makes ae UD012K40 regulation response slower l 7 See figure 5 5 6 Figure 5 5 6 Analog input l filter time V Signal minimum scaling Sets the minimum scaling point for V signal See figure 5 5 7 V Signal maximum scaling Sets the maximum scaling point for V signal See figure 5 5 7 I Signal minimum scaling Sets the minimum scaling point for signal See figure 5 5 7 I signal maximum scaling Sets the maxim
316. t Fault is shown and motor is stopped when the input is not active 3 Run enable contact open Start of the motor disabled contact closed Start of the motor enabled 4 Acc Dec contact open Acceleration Deceleration time 1 selected time select contact closed Acceleration Deceleration time 2 selected 5 Reverse contact open Forward Can be used for reversing if contact closed Reverse parameter 2 1 has value 3 6 Jog speed contact closed Jog speed selected for freq reference 7 Fault reset contact closed Resets all faults 8 Acc Dec operation contact closed Stops acceleration or deceleration until prohibited the contact is opened 9 DC braking command contact closed In Stop mode the DC braking operates until the contact is opened see figure 5 5 4 DC brake current is set with parameter 4 8 Page 5 17 Multi purpose Control Application Output frequency Param 4 10 7 t pa gt DIAS BOP UD012K32 a DIA3 as DC brake command input and stop mode amp A t DIAS Be UD012K32 b DIA3 as DC brake command input and stop mode Coasting Figure 5 5 4 DIA3 as DC brake command input a Stop mode Ramp b Stop mode Coasting DIB4 function Selections are same as in 2 2 except 10 Multi Step contact closed Selection 1 active speed select 1 DIB5 function Selections are same as in 2 2 except 10 Multi Step contact closed
317. t opening contact Fault is shown and motor is stopped when the input is not active 3 Run enable contact open Start of the motor disabled contact closed Start of the motor enabled 4 Acc Dec contact open Acceleration Deceleration time 1 selected time select contact closed Acceleration Deceleration time 2 selected 5 Reverse contact open Forward If two or more inputs are contact closed Reverse programmed to reverse only one of them is required for reverse 6 Jog freq contact closed Jog frequency selected for freq refer 7 Fault reset contact closed Resets all faults 8 Acc Dec contact closed Stops acceleration and deceleration until operation the contact is opened prohibited 9 DC braking contact closed Inthe stop mode the DC braking operates command until the contact is opened see figure 6 5 1 DC brake current is set with parameter 4 8 Page 6 18 Pump and fan control Application 2 14 Motor potentiometer ramp time Defines how fast the electronic motor digital potentiometer value changes 2 15 Pl controller reference signal 0 Analog voltage reference from terminals 2 3 e g a potentiometer 1 Analog current reference trom terminals 4 5 e g a transducer 2 Panel reference is the reference set from the Reference Page REF Reference r2 is the Pl controller reference see chapter 6 3 Reference value is changed with digital input signals DIA2 and DIAS switch in DIA2 closed
318. t name CX Frequency converter CXL Frequency converter CXS Frequency converter Model number has been designed and manufactured in accordance with the following standards Safety EN 50178 1995 and relevant parts of EN60950 1992 Am 1 1993 Am 2 1993 Am 3 1995 EN60204 1 1996 EMC EN50082 2 1995 EN61800 3 and conforms to the relevant safety provisions of the Low Voltage Directive 73 23 EEC as amended by the Directive 93 68 EEC and EMC Directive 89 336 EEC It is ensured through internal measures and quality control that product conforms at all times to the requirements of the current Directive and the relevant standards Vaasa 12 05 1997 Us aa ae eee Veijo Karppinen Managing Director The last two digits of the year the CE marking was affixed _97 Page 5 84 Directives EU DECLARATION OF CONFORMITY We Manufacturer s Name Vaasa Control Manufacturer s Address P O BOX 25 Runsorintie 5 FIN 65381 VAASA Finland hereby declares that the product Product name CX Frequency converter Model number CX N RF lin has been designed and manufactured in accordance with the following standards Safety EN 50178 1995 and relevant parts of EN60950 1992 Am 1 1993 Am 2 1993 Am 3 1995 EN60204 1 1996 EMC EN50081 2 1993 EN50082 2 1995 EN61800 3 1996 Technical construction file Prepared by Vaasa Control Oy Function Manufacturer Date 03 05 1996 TCF no RP00012
319. te of the motor Nominal current of the motor 2 5 xX Incx Inox from the nameplate of the motor Supply voltage 208 240 230 V CX CXL CXS V 3 2 380 440 400 V CX CXL CXS V 3 4 380 500 500 V CX CXL CXS V 35 525 690 690 V CXV36 Parameter conceal 0 1 0 Visibility of the parameters 0 All parameter groups visible 1 Only group 1 is visible Parameter value lock Disables parameter changes 0 Changes enabled 1 Changes disabled Table 2 4 1 Group 1 basic parameters If 1 2 gt motor synchr speed check suitability for motor and drive system Selecting 120 Hz 500 Hz range see Note Parameter value can be changed page 2 5 ony when the driyeisistopped Default value for a four pole motor and a nominal size drive Page 2 4 Local Remote Control Application 2 4 2 Description of Group 1 parameters 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 Minimum maximum frequency Defines the frequency limits of the drive The default maximum value for parameters 1 1 and 1 2 is 120 Hz By setting the value of parameter 1 2 to 120 Hz when the drive is stopped RUN indicator not lit parameters 1 1 and 1 2 are changed to 500 Hz At the same time the resolution of the panel reference is changed from 0 01 Hz to 0 1 Hz Changing the max value from 500 Hz to 120 Hz is done by setting parameter 1 2 to 119 Hz w
320. tection has fixed settings In other applications it is possible to set the thermal protection parameters A trip or a warning will give an indication on the display If trip is selected the drive will stop the motor and generate a fault Deactivating the protection by setting the parameter to 0 will reset the internal thermal model to 0 heating The CX CXL CXS drive is capable of providing higher than nominal current to the motor If the load requires this high current there is a risk Al that motor will be thermally overloaded This Gites is true especially at low frequencies With low limit par 1 7 frequencies the cooling effect of the motor fan is reduced and the capacity of the motor is Overload area reduced Motor thermal protectionisbasedon 70 J IT a calculated model and it uses the output a current of the drive to determine the load on the motor 45 The thermal current ly specifies the load Nmotor current above which the motor is overloaded See figure 1 5 17 If the motor current is over f H3 the curve the motor temperature is increasing E gt Z UMCH7_90 Figure 1 5 17 Motor thermal current I curve CAUTION The calculated model does not protect the motor if the cooling of the motor is reduced either by blocking the airflow or due to dust or dirt 7 6 Stall protection Operation 0 Not in use 1 Warning 2 Trip function The Motor Stall protection provides a war
321. temperature Parameters 7 10 7 13 Stall protection General Motor stall protection protects the motor from short time overload situations like a stalled shaft The reaction time of stall protection can be set shorter than with motor thermal protection The stall state is defined with two parameters 7 11 Stall Current and 7 13 Stall Frequency If the current is higher than the set limit and output frequency is lower than the set limit the stall state is true There is actually no real indication of the shaft rotation Stall protection is a type of overcurrent protection 7 10 Stall protection Operation 0 Not in use 1 Warning 2 Trip function Tripping and warning will give a display indication with the same message code If tripping is set on the drive will stop and activate the fault stage Setting this parameter to 0 will deactivate the protection and will reset the stall time counter to zero Page 6 32 Pump and fan control Application Stall current limit A The current can be set between 0 0 200 x lnMotor In the stall stage the current has to be above this limit Refer to the figure6 5 20 The value is set as a Stall area percentage of the motor s name plate nominal current parameter 1 13 If parameter 1 13 is Par 7 11 adjusted this parameter is i automatically restored to its i default value l f Hz i gt Figure 6 5 20 Setting the stall Par 7 13 umcu7_11
322. th parameter 4 8 10 Motor digital contact closed Reference increases until the contact is pot UP opened A Output frequency Param 4 10 7 t gt DIA3 RUN P UD009K32 DIA3 as DC brake command input and stop mode Ramp A t DIA3 Figure 6 5 1 DIA3 as DC brake command input UD009K32 a Stop mode ramp DIA3 as DC brake command input and stop mode Coasting b Stop mode coasting Page 6 16 Pump and fan control Application 2 2 DIA3 function Selections are same as in 2 1 except 10 Motor digital contact closed Reference decreases until the contact is pot DOWN opened 2 3 V Signal range 0 Signal range 0 10 V 1 Custom setting range from custom minimum par 2 4 to custom maximum par 2 5 2 4 V custom setting minimum maximum 2 5 These parameters set V for any input signal span within 0 10 V Minimum setting Set the V signal to its minimum level select parameter 2 4 press the Enter button Maximum setting Set the V signal to its maximum level select parameter 2 5 press the Enter button Note The parameter values can only be set with this procedure not with arrow up arrow down buttons 2 6 V signal inversion Parameter 2 6 0 no inversion of analog V signal Parameter 2 6 1 inversion of analog V signal 2 7 V Signal filter time Filters out disturbances from the incoming analog V signal
323. the motor Linear Default Nominal frequency of the Squared motor HZ Figure 4 4 2 Linear and squared V Hz curves Programm The V Hz curve can be programmed with three different points V Hz curve The parameters for programming are explained in chapter 4 5 2 2 A programmable V Hz curve can be used if the standard settings do not satisfy the needs of the application See figure 4 4 3 U V Parameter 6 4 Parameter 6 6 Default 10 Parameter 6 7 Default 1 3 Parameter 6 5 Parameter 6 3 f Hz Default 5 Hz Figure 4 4 3 Programmable V Hz curve V Hz optimization Automatic The voltage to the motor changes automatically which makes the torque boost NOTE ZN motor produce enough torque to start and run at low frequencies The voltage increase depends on the motor type and horsepower Automatic torque boost can be used in applications where starting torque due to starting friction is high e g in conveyors In high torque low speed applications it is likely the motor will overheat If the motor has to run for a prolonged time under these conditions special attention must be paid to cooling the motor Use external cooling for the motor if the temperature rise is too high Page 4 6 Pl control Application 1 10 Nominal voltage of the motor Find this value V from the nameplate of the motor This parameter sets the voltage at the field weakening point parameter
324. the time that it takes the calculated thermal stage to reach 63 of its final value The motor thermal time is specific to a motor design and it varies between different motor manufacturers The default value for the time constant is calculated based on the motor nameplate data from parameters 1 12 and 1 13 If either of these parameters is reset then this parameter is set to default value If the motor s tg time is known given by the motor manufacturer the time constant parameter could be set based on tg time As a rule of thumb the motor thermal time constant in minutes equals to 2xt tg in seconds is the time a motor can safely operate at six times the rated current If the drive is stopped the time constant is internally increased to three times the set parameter value The cooling in the stop stage is based on convection with an increased time constant Motor thermal protection break point frequency This frequency can be set between 10 500 Hz This is the frequency break point of the thermal current curve With frequencies above this point the thermal capacity of the motor is assumed to be constant Refer to figure 4 5 20 The default value is based on the motor s nameplate data parameter 1 11 It is 35 Hz for a 50 Hz motor and 42 Hz for a 60 Hz motor More generally it is 70 of the frequency at the field weakening point parameter 6 3 Changing either parameter 1 11 or 6 3 will restore this parameter to its default
325. this parameter is set to its default value If the motor s tg time is known given by the motor manufacturer the time constant parameter could be set based on tg time As a rule of thumb the motor thermal time constant in minutes equals to 2xtg tg in seconds is the time a motor can safely operate at six times the rated current If the drive is in stopped the time constant is internally increased to three times the set parameter value The cooling in the stop stage is based on convection with an increased time constant Motor thermal protection break point frequency The frequency can be set between 10 500 Hz This is the frequency break point of thermal current curve With frequencies above this point the thermal capacity of the motor is assumed to be constant Refer to the figure 6 5 18 Page 6 31 Pump and fan control Application The default value is based on motor s nameplate data parameter 1 11 It is 35 Hz for a 50 Hz motor and 42 Hz for a 60 Hz motor More generally it is 70 of the frequency at the field weakening point parameter 6 3 Changing either parameter 1 11 or 6 3 will restore this parameter to its default value A Motor temperature 105 Motor aoh ee par 7 It Time constant T Motor temperature l l x 1 e T Time gt Changed with motor size and adjusted with parameter 7 8 UMCH7_92 Figure 6 5 19 Calculating motor
326. this stall protection is shorter than the motor thermal protection time The stall state is defined by Stall Current and Stall Frequency A Both parameters have constant values l See figure 10 5 2 1 If the current is higher than the set limit and the output is lower than the set limit the stall state is true lf the stall state lasts longer than 15 s the stall warning is given on the display To change th stall warning to a fault trip or to change the protection settings see the application manual Stall area 130 INmot f gt Figure 10 5 2 1 Stall state 25 Hz UMCH7_10 Page 79 84 System parameter group 0 11 System parameter group 0 When the application package lock is open par 1 15 0 the system parameter group 0 erate iS can be accessed Parameter group 0 can be entered from parameter 1 1 by the pressing arrow down button The parameters of group 0 are shown in table 11 1 N v Group 0 0 2 system 0 1 parameters Figure 11 1 Group 0 11 1 Parameter table Number Parameter Range Description Page 0 1 Application 1 7 1 Basic Application 80 selection 2 Standard Application 3 Local Remote Control Application 4 Multi step Speed Application 5 Pl control Application 6 Multi purpose Control Application 7 Pump and fan control Application 0 2 Parameter 0 5 0 Loading ready Select loading 81 l
327. ti 1 6000s 1s 30s 4 34 attempt maximum trial time 8 3 Automatic restart 0 1 1 0 0 Ramp 4 35 start function 1 Flying start 8 4 Automatic restart after 0 1 1 0 0 No 4 35 undervoltage trip 1 Yes 8 5 Automatic restart after 0 1 1 0 0 No 4 35 overvoltage trip 1 Yes 8 6 Automatic restart after 0 1 1 0 0 No 4 35 overcurrent trip 1 Yes 8 7 Automatic restart after 0 1 1 0 0 No 4 35 reference fault trip 1 Yes 8 8 Automatic restart after 0 1 1 0 0 No 4 35 over undertemperature 1 Yes fault trip Table 4 5 1 Special parameters Groups 2 8 Page 4 14 Pl control Application 4 5 2 Description of Groups 2 8 parameters 2 1 DIA2 function 1 External fault closing contact Fault is shown and motor is stopped when the input is active 2 External fault opening contact Fault is shown and motor is stopped when 3 Run enable contact open the input is not active Start of the motor disabled contact closed Start of the motor enabled 4 Acc Dec contact open time select contact closed 5 Reverse contact open contact closed 6 Jog speed contact closed 7 Fault reset contact closed 8 Acc Dec contact closed operation prohibited 9 DC braking contact closed command 10 Motor digital contact closed pot UP Figure 4 5 1 DIA3 as DC brake command input a Stop mode ramp b Stop mode coasting Acceleration Deceleration time 1 sele
328. time overload situations like a stalled shaft The reaction time of stall protection can be set shorter than with motor thermal protection The stall state is defined with two parameters 7 11 Stall Current and 7 13 Stall Frequency If the current is higher than the set limit and output frequency is lower than the set limit the stall state is true There is no true detection of shaft rotation Stall protection is a type of overcurrent protection Stall protection Operation 0 Not in use 1 Warning 2 Trip function Tripping and warning will give a display indication with the same message code If tripping is set on the drive will stop and generate a fault Deactivating the stall protection by setting the parameter to 0 will reset the stall time counter to zero Stall current limit A The current can be set between 0 0 200 x In the stall stage the current has to be above this limit Refer to figure 2 5 30 The value is set as Seiares a percentage of the motor name plate nominal current parameter 1 13 If parameter 1 13 is adjusted this parameter is i automatically restored to its default value nMotor Par 7 11 f Hz gt Par 7 13 umcn7_11 Stall time Figure 2 5 30 Setting the stall characteristics The time can be set between 20 120 8 A Stall time counter This is the maximum allowed time for a stall stage There is an Trip area internal up down counter to count Par 7 12
329. tion 1 0 Not used Scale 100 1 O P frequency 0 fmax 2 Motor speed 0 max speed 3 O P current 0 2 0 x Incx 4 Motor torque 0 2 x Trot 5 Motor power 0 2 x Prmot 6 Motor voltage 0O 100 xV mot 7 DC link volt 0 1000 V 8 10 Not in use 11 Pl controller reference value 12 Pl controller actual value 1 13 Pl controller actual value 2 14 Pl controller error value 15 Pl controller output Analog output filter time 0 00 10 00 s Analog output inversion 0 1 0 Not inverted 1 Inverted Analog output minimum 0 1 0 0mA 1 4mA Analog output scale 10 1000 Digital output function 0 30 0 Not used 1 Ready 2 Run 3 Fault 4 Fault inverted 5 CX overheat warning 6 External fault or warning 7 Reference fault or warning 8 Warning 9 Reversed 10 Jog speed selected 11 At speed 12 Motor regulator activated 13 Output freq limit superv 1 14 Output freq limit superv 2 15 Torque limit supervision 16 Reference limit supervision 17 External brake control 18 Control from I O terminals 19 Drive temperature limit supervision 20 Unrequested rotation direction 21 External brake control inverted 22 27 Not in use 28 Auxiliary drive 1 start 29 Auxiliary drive 2 start 30 Auxiliary drive 3 start Relay output 1 function As parameter 3 6 Relay output
330. tion deceleration Page 6 24 BS ho 4 5 4 6 4 7 4 8 4 9 4 9 Pump and fan control Application Acceleration time 2 Deceleration time 2 These values correspond to the time required for the output frequency to accelerate from the set minimum frequency par 1 1 to the set maximum frequency par 1 2 With this parameter it is possibile to set two different acceleration deceleration times for one application The active set can be selected with programmable signal DIA3 of this application See parameter 2 2 Acceleration deceleration times can be reduced with a external free analog input signal See parameters 2 18 and 2 19 Brake chopper 0 No brake chopper 1 Brake chopper and brake resistor installed 2 External brake chopper When the drive is decelerating the motor the energy stored in the inertia of the motor and the load is fed into the external brake resistor If the brake resistor is selected correctly the drive is able to decelerate the load with a torque equal to that of acceleration See the separate Brake resistor installation manual Start function Ramp 0 The drive starts from 0 Hz and accelerates to the set reference frequency within the set acceleration time Load inertia or starting friction may cause prolonged acceleration times Flying start 1 The drive starts into a running motor by first finding the speed the motor is running at Searching starts from the maxim
331. tion functions in the Basic Application 10 5 1 Motor thermal protection Motor thermal protection protects the motor from overheating In the Basic application Motor thermal protection uses constant settings and always causes a fault trip if the motor is overheated To switch off the protection or to change the settings see application manual Your CX CXL CXS is capable of A supplying higher than nominal current to Current the motor If the load requires this high 4 7 current there is a risk that motor will be thermally overloaded This is true 400 Overload area especially at low frequencies as the Nmotor T cooling effect and thermal capacity of the motor are reduced The motor thermal protection is based on a 45 calculated model which uses the output INmotor current of the drive to determine the load on the motor i The thermal current specifies the load ER gt Z UMCH7_91 current above which the motor is overloaded See figure 10 5 1 1 If the motor current is above the curve the motor temperature is increasing Figure 10 5 1 1 Motor thermal current l curve i CAUTION The calculated model does not protect the motor if the airflow to the motor is reduced by an air intake grill that is blocked 10 5 2 Motor Stall warning In the Basic application motor stall protection gives a warning of a short time overload of the motor e g a stalled shaft The reaction time of
332. tor thermal time constant in minutes equals to 2xtg tg in seconds is the time a motor can safely operate at six times the rated current If the drive is stopped the time constant is internally increased to three times the set parameter value Cooling in the stop stage is based on convection with an increased time constant Motor thermal protection break point frequency This frequency can be set between 10 500 Hz This is the frequency break point of the thermal current curve With frequencies above this point the thermal capacity of the motor is assumed to be constant Refer to the figure 2 5 28 The default value is based on the motor s nameplate data parameter 1 11 It is 35 Hz for a 50 Hz motor and 42 Hz for a 60 Hz motor More generally it is 70 of the frequency at the field weakening point parameter 6 3 Changing either parameter 1 11 or 6 3 will restore this parameter to its default value A Motor temperature Trip area 105 eran e a e Motor current ot oot a oot Q te Saan Time constant T ot Motor temperature I It x 1 e tT Time gt Changed with motor size and adjusted with parameter 7 8 UMCH7_92 Figure 2 5 29 Calculating motor temperature Page 2 33 Local Remote Control Application Parameters 7 10 7 13 Stall protection General Motor stall protection protects the motor from short
333. tor will coast to a stop with the CX CXL CXS off With DC injection the motor can be electrically stopped in the shortest possible time without using an optional external braking resistor The braking time is scaled according to the frequency when the DC braking starts If the frequency is gt nominal frequency of the motor par 1 11 the value of parameter 4 9 determines the braking time When the frequency is lt 10 of the nominal the braking time is 10 of the set value of parameter 4 9 Stop function 1 ramp After a Stop command the speed of the motor is reduced based on the deceleration ramp parameter If no regeneration occurs due to load inertia DC braking starts at a speed defined by parameter 4 10 A A fout Hz fout Hz fn r fn bs Output frequency al S Motor speed N N Output frequency Motor speed DC braking ON 5 0 1x f EES DC braking ON ae t t 0 1 x par 4 9 f E t 1 x par 4 9 gt l gt l t 0 1 x par 4 RUN RUN UD009K21 STOP STOP ee Figure 3 5 23 DC braking time when stop coasting The braking time is defined with parameter 4 9 ey Nat ett a fout Hz If high inertia exists it is b A D Motor speed recommended to use an external braking resistor for faster al deceleration See figure 3 5 24 DC braking Param 4 10 oe ie a i t gt t param 4
334. tored through the display Refer to the table for monitoring items User s Manual table 7 3 1 CAUTION The calculated model does not protect the motor if the cooling of the motor is reduced either by blocking the airflow or due to dust or dirt 7 5 7 6 Motor thermal protection Operation 0 Not in use 1 Warning 2 Trip function Tripping and warning will give a display indication with the same message code If tripping is selected the drive will stop and activate the fault stage Deactivating the protection by setting this parameter to 0 will reset the thermal stage of the motor to 0 Motor thermal protection break point current The current can be set between 50 0 150 0 X limotor This parameter sets the value for thermal current at frequencies above the break point on the thermal current curve Refer to the figure 5 5 23 The value is set in percentage of the motor nameplate data of the motor parameter 1 13 not the drive s nominal output current The motor s nominal current is the current which the motor can withstand in direct on line use without being overheated If parameter 1 13 is adjusted this parameter is automatically restored to the default value Setting this parameter or parameter 1 13 does not affect the maximum output current of the drive Parameter 1 7 alone determines the maximum output current of the drive Page 5 32 7 7 7 8 Multi purpose Control Applicatio
335. uces less torque and electromechanical noise A squared V Hz ratio can be used in applications where the torque demand from the load is proportional to the square of the speed e g in centrifugal fans and pumps Field weakening point Default Nominal voltage of the motor Linear Default Nom inal frequency of the Squared motor Hz Figure 10 4 1 2 Linear and squared V Hz curves V Hz optimization Automatic The voltage to the motor changes automatically which allows the torque motor to produce sufficient torque to start and run at low frequencies boost The voltage increase depends on the motor type and horsepower Automatic torque boost can be used in applications where starting torque due to starting friction is high e g in conveyors NOTE In high torque low speed applications it is likely the motor will overheat If the motor has to run for a prolonged time under these conditions special attention must be paid to cooling the motor Use external cooling for the motor if the operating temperature rise is too high Nominal voltage of the motor Find the rated voltage Vpn from the nameplate of the motor Note If the nominal motor voltage is lower than the supply voltage check that the insulation level of the motor is adequate Nominal frequency of the motor Find the value f from the nameplate of the motor Nominal speed of the motor Find the value n from the nameplate of the mot
336. ue limit Use this parameter to select a function for a free analog input signal 0 1 100 Par 1 7 Function is not used Reducing motor current limit par 1 7 This signal will adjust the maximum motor current between 0 and par 1 7 set 1 Analog max limit See figure 2 5 sur a ov UD012K61 a i Em A Custom Custom Figure 2 5 13 Scaling of max motor current Page 2 20 Local Remote Control Application 2 Reducing DC brake current DC braking current DC braking current can be Pan reduced with the free analog Par 4 8 input signal between current 0 15 x Insyg and the current set by parameter 4 8 See figure 2 5 14 Figure 2 5 14 Reducing DC he Free analog brake current l input 0 Signal range UD012K58 3 Reducing acceleration and deceleration times i 3 A Acceleration and deceleration Factor R times can be reduced with the free analog input signal according to the following formulas Reduced time set acc deceler time par 1 3 1 4 4 3 4 4 divided by the factor R from figure 2 5 15 Figure 2 5 15 Reducing acceleration and deceleration times Free analog input Signal range Ch012K59 4 Reducing torque supervision limit Torque supervision limit can 4 be reduced with a free analog input signal between 0 and the oe set supervision limit par 3 Paes 14 See figure 2 5 16 Torque li
337. um frequency down until the actual frequency reached The output frequency then accelerates decelerates to the set reference value at a rate determined by the acceleration deceleration ramp parameters Use this mode if the motor may be coasting when the start command is given With the flying start it is possible to ride through short utility voltage interruptions Stop function Coasting 0 The motor coasts to an uncontrolled stop with the CX CXL CXS off after the Stop command Ramp 1 After the Stop command the speed of the motor is decelerated according to the deceleration ramp time parameter If the regenerated energy is high it may be necessary to use an external braking resistor for faster deceleration DC braking current Defines the current injected into the motor during the DC braking DC braking time at stop DC braking time at stop Determines whether DC braking is ON or OFF It also determines the braking duration time of the DC brake when the motor is stopping The function of the DC brake depends on the stop function parameter 4 7 See figure 6 5 13 Page 6 25 Pump and fan control Application 0 DC brake is not used gt 0 DC brake is in use depending on the setup of the stop function param 4 7 The time is set by the value of parameter 4 9 Stop function 0 coasting After the stop command the motor will coast to a stop with the CX CXL CXS off With DC injection the motor can be electrically
338. um scaling point for signal See figure 5 5 7 Page 5 20 2 20 2 21 Multi purpose Control Application A Scaled input signal 100 Par 2 19 30 Par 2 20 80 80 a O20 e Se te ee HAH 3 0 8 0 6 0 16 0 8 8 16 8 ROO 88 Scaled input signal 100 76 5 15 3 mA Par 2 19 30 Par 2 20 140 Analog inpyt 10 0 V 20 0 mA 20 0 mA Ch012K34 Figure 5 5 7 Examples of the scaling of Vin and lin inputs Free analog input signal Selection of input signal of free analog input an input not used for reference signal 0 Not in use 1 Voltage signal Vin 2 Current signal lin Free analog input signal function This parameter sets the function of the free analog input 0 Function is not used 1 Reducing motor current limit par 1 7 This signal will adjust the maximum motor current between 0 and parameter 1 7 set max limit See figure 5 5 8 Figure 5 5 8 Reducing of max motor current 2 Reducing DC brake current The DC braking current can be reduced with the free analog input signal between 0 15xlycx and current set by parameter 4 8 See figure 5 5 9 Figure 5 5 9 Reducing DC brake current A Torque limit 100 7 1 Par 1 7 1 l I I i 1 Analog input f v Signal range 10V 0 mA 20 mA Ch012K61 4mA 20 mA Custom Custom A DC
339. underload curve is a squared curve set between zero frequency and the field weakening point The protection is not active below 5 Hz the underload counter value is stopped Refer to the figure 4 5 24 The torque values for setting the underload curve are set with percentage values which refer to the nominal torque of the motor The motor s nameplate data parameter 1 13 the motor s nominal current and the drive s nominal current lct are used to find the scaling ratio for the internal torque value If other than a standard motor is used with the drive the accuracy of the torque calculation is decreased 7 14 Underload protection Operation 0 Not in use 1 Warning 2 Fault Tripping and warning will give a display indication with the same message code If tripping is set active the drive will stop and activate the fault stage Deactivating the protection by setting this parameter to 0 will reset the underload time counter to zero Page 4 33 Pl control Application Underload protection field weakening area load Torque limit can be set between 20 0 150 x Trmotor This parameter is the value for the minimum allowed torque when the output frequency is above the field weakening point Refer to the figure 4 5 24 If parameter 1 13 is adjusted this parameter is automatically restored to its default value A Torque Par 7 15 Par 7 16 Underload area f Hz gt Field weakening ChcH7_
340. ure 5 5 25 The value is Stall area set as a percentage of the motor s name plate nominal current parameter 1 13 motor s nominal current If parameter 1 13 is adjusted this parameter is automatically restored to its default value Par 7 11 f Hz gt Figure 5 5 25 Setting the stall Pate Ymch characteristics Stall time The time can be set between 2 0 120 s This is the maximum allowed time for a stall stage There is an internal up down counter to count the stall time Refer to the figure 5 5 26 If the stall time counter value goes above this limit the protection will cause a trip refer to the parameter 7 10 Maximum stall frequency Tea all time counter The frequency can be set between 1 f nax par 1 2 In the stall state the ouput frequency has to be smaller than this limit Refer to the figure 5 5 25 Trip area Par 7 12 Trip warning par 7 10 UMCH7_12 Time gt Stall No stall Figure 5 5 26 Counting the stall time Parameters 7 14 7 17 Underload protection General The purpose of motor underload protection is to ensure that there is load on the motor while the drive is running If the motor load is reduced there might be a problem in the process e g broken belt or dry pump Motor underload protection can be adjusted by setting the underload curve with parameters 7 15 and 7 16 The underload curve is a squared curve set
341. urned on to the drive the calculated model uses the heatsink temperature to determine the initial thermal stage for the motor The calculated model assumes that the ambient temperature of the motor is 40 C Motor thermal protection can be adjusted by setting several parameters The thermal current Iz specifies the load current above which the motor is overloaded This current limit is a function of the output frequency The curve for I is set with parameters 7 6 7 7 and 7 9 Refer to the figure 6 5 18 The default values of these parameters are set from the motor nameplate data Page 6 29 Pump and fan control Application With the output current at lq the thermal stage will reach the nominal value 100 The thermal stage changes by the square of the current With output current at 75 from ly the thermal stage will reach 56 value and with output current at 120 from ly the thermal stage would reach 144 value The function will trip the drive refer par 7 5 if the thermal stage will reach a value of 105 The response time of the thermal stage is determined with the time constant parameter 7 8 The larger the motor the longer it takes to reach the final temperature The thermal stage of the motor can be monitored through the display Refer to the table for monitoring items User s Manual table 7 3 1 CAUTION The calculated model does not protect the motor if the cooling of the motor is reduced either by blocking
342. urns to the normal level gt 4 mA Automatic restart after over undertemperature fault trip 0 No automatic restart after temperature fault trip 1 Automatic restart after heatsink temperature has returned to its normal level between 10 C 75 C Page 5 38 Multi purpose Control Application Notes Page 5 39 Multi purpose Control Application Notes Page 5 40 Pump and fan control Application PUMP AND FAN CONTROL APPLICATION par 0 1 7 CONTENTS 6 Pump and fan control Application 6 1 6 1 GONeral 0 0 0 ecceesecceeeeeessseeeeeeeeeeesssaaees 6 2 6 2 Gontroll O saperon e a 6 2 6 3 Control signal logic ssssseeeeenneeseeeeeeeeee eee 6 3 6 4 Basic parameters Group 1 sessseseeseeeens 6 4 6 4 1 Parameter table Group 1 4 6 4 6 4 2 Description of Group1 parameters 6 5 6 5 Special parameters Groups 2 9 6 8 6 5 1 Parameter tables Groups 2 9 6 8 6 5 2 Description of Groups 2 9 param 6 16 6 6 Monitoring data ee eeeeeeeee teeta 6 40 6 7 Panel reference ceceeeeessececeeeeseeeees 6 41 Page 6 1 Pump and fan control Application 6 1 General The pump and fan control appliation can be selected by setting the value of parameter 0 1 to 7 The application
343. urrent Motor torque 2 x Taiot 12ma t A faa pt J 22 param 3 5 Motor power 2 x Pano aren ne a ee ita ae ase ee Motor voltage 100 x Viniot fe ee DC link volt 1000 V Par 3 4 1 i 7 4mA 4 7 Max value of signal Par 3 4 0 selected by param 3 1 OmA t gt 0 0 5 1 0 Ch012K18 Figure 2 5 19 Analog output scale Digital output function Relay output 1 function Relay output 2 function Setting value Signal content 0 Not used Out of operation Digital output DO1 sinks current and programmable Ready Run Fault Fault inverted CX overheat warning External fault or warning Reference fault or warning NOANA OUON 8 Warning 9 Reversed 10 Jog speed 11 At speed 12 Motor regulator activated 13 Output frequency supervision 1 14 Output frequency supervision 2 15 Torque limit supervision 16 Active reference limit supervision 17 External brake control 18 Control from I O terminals 19 Drive temperature limit supervision 20 Unrequested rotation direction 21 External brake control inverted relay RO1 RO2 is activated when The drive is ready to operate The drive operates motor is running A fault trip has occurred A fault trip has not occurred The heat sink temperature exceeds 70 C Fault or warning depending on parameter 7 2 Fault or warning depending on parameter 7 1 if analog reference is 4 20 mA and
344. utomatic torque boost Nominal voltage of the motor 180 690 V 230 V 380 V 480 V 575 V CX CXL CXS V 3 2 CX CXL CXS V 3 4 CX CXL CXS V 35 CXV36 Nominal frequenc of the motor 30 500 Hz 60 Hz f from the rating plate of the motor Nominal speed of the motor 1 20000 rpm 1720 rpm Nn from the rating plate of the motor Nominal current of the motor 2 5X Incx Inox from the rating plate of the motor Supply voltage 208 240 230 V CX CXL CXS V 3 2 380 440 380 V CX CXL CXS V 3 4 380 500 480 V CX CXL CXS V 35 525 690 575 V CXV36 Parameter conceal 0 1 0 Visibility of the parameters 0 All parametergroups visible 1 Only group 1 is visible Parameter value lock only when the drive is stopped Table 6 4 1 Group 1 basic parameters Note Parameter value can be changed Disables parameter changes 0 Changes enabled 1 Changes disabled If 1 2 gt motor synchr speed check suitability for motor and drive system Selecting 120 Hz 500 Hz range see page 6 5 Default value for a four pole motor and a nominal size drive Page 6 4 Pump and fan control Application 6 4 2 Description of Group 1 parameters 1 1 1 2 Minimum maximum frequency Defines frequency limits of the drive The default maximum value for parameters 1 1 and 1 2 is 120 Hz By setting
345. w frequencies With low frequencies the cooling effect of the motor fan is reduced and the capacity of the motor is reduced If the motor is equipped with a separately powered external fan the load derating at low speed is small Motor thermal protection is based on a calculated model and it uses the output current of the drive to determine the load on the motor When the motor is powered from the drive the calculated model uses the heatsink temperature to determine the initial thermal stage for the motor The calculated model assumes that the ambient temperature of the motor is 40 C Motor thermal protection can be adjusted by setting several parameters The thermal current ly specifies the load current above which the motor is overloaded This current limit is a function of the output frequency The curve for ly is set with parameters 7 6 7 7 and 7 9 refer to the figure 3 5 28 The default values of these parameters are set from the motor nameplate data With the output current at l7 the thermal stage will reach the nominal value 100 The thermal stage changes by the square of the current With output current at 75 from ly the thermal stage will reach 56 value and with output current at 120 from ly the thermal stage would reach 144 value The function will trip the drive refer par 7 5 if the thermal stage will reach a value of 105 The response time of the thermal stage is determined with the time constant parameter 7 8 The
346. with an external fan the load reduction on low speed is small Page 5 31 Multi purpose Control Application Motor thermal protection is based on a calculated model and it uses the output current of the drive to determine the load on the motor When the power is turned on to the drive the calculated model uses the heatsink temperature to determine the initial thermal stage for the motor The caculated model assumes that the ambient temperature of the motor is 40 C Motor thermal protection can be adjusted by setting several parameters The thermal current ly specifies the load current above which the motor is overloaded This current limit is a function of the output frequency The curve for I is set with parameters 7 6 7 7 and 7 9 refer to the figure 5 5 23 The default values of these parameters are set from the motor nameplate data With the output current at lq the thermal stage will reach the nominal value 100 The thermal stage changes by the square of the current With output current at 75 from ly the thermal stage will reach 56 value and with output current at 120 from I the thermal stage would reach 144 value The function will trip the device refer par 7 5 if the thermal stage will reach a value of 105 The response time of the thermal stage is determined with the time constant parameter 7 8 The larger the motor the longer it takes to reach the final temperature The thermal stage of the motor can be moni
347. xHxD Encl l T a inches 1 Catalog Number cxLoo30vV34 3 CXL 0040V34 4 i Weight lbs o o NI ol iN no ney as 4 ces o E Tox 01604 15 32 eo 75 W 2 3 4 5 5 11 15 22 30 37 5 55 75 90 8 22 30 37 45 55 75 90 22 48 30 37 75 M6 NEMA 1 8 7 x 25 6 x 11 4 90 110 13 17 6 18 an 15 32 35 3 e cx os00va4 30 84 CXL 0370 V 34 CXL 0550 V 34 110 150 Sr osovae e 150 180 M7 NEMA1 14 7x39 4x 13 0 221 CXL 0900 V 34 180 110 210 CXL 1320 V 34 132 270 160 325 M8 NEMA 1 19 5 x 47 6 x 13 9 309 CxL2000V34 200 410 250 510 580 ease ls E ox 3150 34 315 600 400 750 oa aes 840 y Ict continuous rated input and output current constant torque load max 50C ambient Ivt continuous rated input and output current variable torque load max 40C ambient n Page 16 84 Technical Data 440 500Vac 10 15 50 60 Hz 3 Input Series CXL NEMA 12 Rated Horsepower and output current Catalog Frame Size Dimensions Constant Torque Variable Torque WxHxD Number Enclosure Style 5 8 i 2 2 3 4 5 6 7 9 p inches asi 5 8 5 T ARA 1 a 7 oxo vas 3 5 CXL oP vas _ CXL 0050HP V 35 5 ENEE A B LE CXL oooHPv as 10 15 CXL osoHP vas 15 a o 5 e M4 NEMA 12 4 7 x 15 4 x 8 5 0 M5 NEMA 12 6 2 x 20 3 x 9 4
348. ximum output current of the drive Parameter 1 7 alone determines the maximum output current of the drive A Current limit par 1 7 Overload area Par 7 6 4 IT Par 7 7 f Hz gt Figure 3 5 28 Motor thermal current Par 7 9 uMeH7 91 l curve Motor thermal protection zero frequency current The current can be set between 10 0 150 0 x Inmotor This parameter sets the value for thermal current at zero frequency Refer to figure 3 5 28 The default value is set assuming that there is no external fan cooling the motor If an external fan is used this parameter can be set to 90 or higher The value is set as a percentage of the motor s nameplate nominal current parameter 1 13 not the drive s nominal output current The motor s nominal current is the current which the motor can stand in direct on line use without being overheated If you change parameter 1 13 this parameter is automatically restored to the default value Setting this parameter or parameter 1 13 does not affect to the maximum output current of the drive Parameter 1 7 alone determines the maximum output current of the drive Page 3 32 7 8 7 9 Multi step Speed Control Application Motor thermal protection time constant This time can be set between 0 5 300 minutes This is the thermal time constant of the motor The larger the motor the greater the time constant The time constant is defined as the time
349. xmo HP v35 1100 130 lct rated input and output current constant torque load max 50C ambient Ivt rated input and output current variable torque load max 40C ambient Protected Enclosure with Optional Cover kk Page 14 84 Technical Data 380 440Vac 10 15 50 60 Hz 3 Input Series CX standard protected chassis Rated Kilowatts and output current Catalog Constant Torque Variable Torque Frame slice a wedi q q Enclosure Style Ibs Number v a Cx0022V 34 M4 Protected 4 7 x 11 4x 8 5 15 4 948 oO 3 8 4 2 3 4 55 75 1 T 15 E 22 30 37 45 55 75 250 Pp xz k oO 4 o a a s mer at ries ae 45 3 5 42 4 7 k 8 i 3 8 4 2 2 8 5 5 is BEEE eo cxo ov34 o0 CX 0900 V 3 4 CX 1100 V34 110 CX 0040 V34 1 M6 Protected 8 7 x 20 7 x 11 4 M7 Chassis 9 8 x 31 5 x 12 4 3 4 1 2 3 3 4 5 110 7 tio 75 oa oO o 90 e0 0 3 0 0 50 40 oO 4 oe oO 4 4 oO N oO 3 7 CX 1320 V 3 4 132 2 7 7 CX 1600 V 3 4 160 CX1600V34 Cx2000V34 200 315 600 400 400 500 8 1050 WHT Chassis 551x 394x 154 948 630 1160 710 800 1330 800 1330 900 1480 M12 Chassis 77 9 x 39 4 x 15 4 1212 CX 10000 V 3 4 1000 1600 0 5 0 CX 0030 V 3 4 8 M5 Protected 6 2 x 15 9 x 9 4 z a M9 Chassis
350. y one monitored item can be shown in increased text size with a graph bar The selected parameter value is shown on a graph bar 3 monitored items can be shown on the graphical trend display the parameters of the frequency converter can be uploaded to the panel and then downloaded to another inverter More information can be found in the Graphics Panel manual 13 7 FCDRIVE FCDrive is the PC based tool for control and monitoring of the CX CXL CXS With FCDrive parameters can be loaded from the unit changed saved to a file or loaded back to the unit parameters can be printed to paper or to a file references can be set the motor can be started and stopped signals can be examined in graphical form actual values can be displayed The CX CXL CXS can be connected to a PC with a special RS232 cable The same cable can be used for downloading specialized applications to the CX CXL CXS 13 8 Operator panel door installation kit An adapter kit is available to mount the operator display panel on an enclosure door 13 9 Protected chassis cable cover for 75 125 HP open panel units This optional cable cover provides a protected chassis capability equivalent to IP20 Page 84 84 Honeywell Application Manual Excel VRL CX CXL CXS Constant and variable torque Variable Speed Drives for induction motors 1 Hp to 1100 Hp Subject to changes without notice EXCEL VRL CX CXL CXS APPLICATI
Download Pdf Manuals
Related Search
Related Contents
Conceptronic Serial ATA to IDE Converter Bedienungsanleitung Bewegungsmelder RC-plus next Flare Stroller Instruction Manual TEFAL BJ1100FR Instruction Manual SpeedTalker DeviceNet XP Operation Manual - Electro E2 and Square D Smart Breaker Panel Installation Title: SipFontC User Guide Subtitle: Score font converter in pure Poêle à bois non‑catalytique / catalytique Encore® FlexBurn User`s Manual Copyright © All rights reserved.
Failed to retrieve file