Home
取扱説明書は
Contents
1. 5 9 ANS owc serue 1 C o setur _2 JC 1 ANSx9 5 19 1 0 6 FIX TAB 1 9 5 0 5 9 J n mF 0 6 9C 5 4 5 5555555555555x10 x9 0 6x9 0 x e Start Error 2 e Start Start
2. Sh GG MG f Cad Sh iiu fCat N 1 h 2 fCa 2h N 2n 4 2 Va Sx sb 9818 sere 18 Calculating owc
3. 13 sErup DRG FSE TAB 0 1 e e lt p Cc ES e e 4 e Ge 3 e DEGC CO Co e RAD rad ECS 1 e GRAD 9 Cz 4
4. 2 e 2ndF Ns e e e 2ndF ns 11 e pEL _
5. e e e e e e e e e
6. DEC 25 BIN 2 25 2ndF BN 11001 HEX 1AC gt HEX BIN BIN 110101100 PEN PEN 3203 OCT OCT 654 DEC DEC 428 BIN 1010 100 2ndF BNJ 1010 100 x11 Cx 11 C2 10010 BIN 111 NEG NEG 111 1111111001 HEX 1FF 2ndF HEX 1FF 2ndF ocr OCT 512 512 1511 HEX 2ndF HEX 349 2FEC M 2ndF n amp 2FEC 2C9E A 2C9E 34E 2000 2000 1901 B 1901 M 6FF C RCL _M A4d 1011 AND ON C 2ndF 8N 1011 AND 101 BIN 101 75 2ndF HEX db NOT 10110 2ndF BIN NOT 10110 C 1111101001 BIN 24 XOR 4 OCT 2ndF ocr 24 4 20 B3 XNOR 2ndF HEX 2D HEX 2D FFFFFFFF61 DEC 2ndF 9 0 159 25 10 60 10 60 60 60 60 129347 5518
7. 142 142 4 4 Cy 2ndE A 3 5 2 3 5 2 27 3x5 2 5 2 17 3x5 3x2 3 x 5 3 x 2 27 snaF 27 20 Cv 17 20 Cv 21 20 CA 17 e p e prJ 4 e 2ndF cA 2ndF oFF OFF znoFJ wcrR 2ndF oos amp PHA RCL ANS
8. e Error 2 e 2 3 e X 32 Mopg _o_ x MaT o Start ENr Start 0 Start 0 X10 0 105 ENr e Start G yt y f x 0
9. 59 2ndF 2 ON M CLR ALPHA CA MODE GET UP CINS DEL hyp sin cos AS CONV
10. Slay 2345519902 e e gt d 8 2ndF HYP ALPHA CA Cw 5ndF 2 yp
11. e e 6 e e e
12. 4 RESET 10 0 1 e M A F X Y ANS STAT VAR 5 o o o_J ENr 1 JLo OZC ENr 3 gt prJ 4 3 ENTrJ CA
13. e e 62 e e ik 6 7 8 8 10 10
14. 2 5 8 16 12 1F4 BL x x2 nl YX sin cos X 2sin30 Cr nPr 9x AND XOR XNOR 49 M M 2M DEG PRAD GRAD DATA r60 xy e NORMAL MODE 0 STAT Ca EQN 2 3 1 2 3 CPLX
15. 1 253 dam CK 7639 1186 492 e 0570 05 0892
16. ip PI thot fx 0 sin x 0 5 owc sin J uPMJ x 0 5 Start 0 0 30 Start 180 180 150 2 2 1 OER E484 ZO v RLY 2 2 14 amp 33 A F M X Y e e o 1 3 2ndF ALeg ENr
17. NTT GE PHS 0743 55 0892 9 00 11 45 eH E 10 17 00 GRE CMB lt 62 a 1 1 0120 303 909 ammo PHS IP 043 351 1822 06 6792 1583 9 00 18 00 e 9 00 17 00 e 2007 8 y 63 e
18. e 2noF ALeg ENr e 3 3 2 2 HAL x J _ _ 3 x CF 2 1 1 2 0 5 2ndF ALGB 0 5 ENT 1 125 YA2 B2 204 4 J a x J ALPHA B J x 2ndF ALGB A 2 B 3 2 3 3 605551275 A 2 B 5 2ndF ALGB 5 5 385164807 34 7 wopg 1 C Co Ce SD 1 Stat 0 CLINE 1 Stat 1 QUAD 2 Stat 2 EXP
19. e DEG Li 10 58 HARE 1 2 3 15358 61410 24 10 5 3V DC LR44 2 5 000 0 C 40 C 79 6mmX 154 5mmX 13 2mm 97g 2
20. X 1 FR owe Mopg _o 1000000Cx JCC 1 0 05 1050000 1 CX JC 1 90 050 JC 1102500 24 4 11576258 3448 52 4 py_ oNc Error 1 e 2 5 Error 2 e 10190 e 0 0 e Error 3 e 10 24
21. 5 e e e http www sharp co jp calc 64 English Operation Guide CONTENTS INTRODUCTION Operational Notes Hard Case DS E 4 BEFORE USING THE CALCULATOR E 5 Key Notation Used in this Manual Power On and Off Clearing the Entry and Memories Entering and Correcting the Equation Multi line Playback function Priority Levels in Calculation INITIAL SET UP Mode Selection SET UP menu SCIENTIFIC CALCULATIONS Arithmetic Operations Constant Calculations Functions Differential Integral Functions Random Function Angular Unit Conversions Memory Calculations Chain Calculations Fraction Calculations Binary Pental Octal Decimal and Hexadecimal Operations N Base
22. A e e oe RESET e e e e
23. Ly 12 39 18 05 12 39 18 05 10 12 65501389 123 678 60 123 678 123 40 40 8 3h30m45s 30 45 6 0 6h45m36s 60 45 36 C 10216721 1234 56 12 1234 56 12 0 0 34 567 60 0 ows 0 DMs 34 567 1234 56 47 3h45m 3 oms 45 1 69 1 69h 60 2 3 36 sin62 12 24 10 62 os 12 ows 24 0 884635235 24 24 86 400 1500 4 0 Ds 0 0 1500 3 25 e M 59 dd y lt gt 27 0 p 0 X e X Y x Y 26 6 2ndF 4 7 211102551 33 69006753 7 211102551 x26 r 2ndF re y 4 2ndF J rl 14 2ndF gt 36 r 14 x2 e 3ep 11 32623792 8 228993532 11 32623792 cNsr 2 BE 01
24. e e e oe 57 2ndF OFF 2 2 1 3 2 2 4 2 5 6 RESET
25. 2 5 8 16 CODATA 2002 NIST 1995 Guide for the Use of the International System of Units SD ISO JIS Z8202 1985 01 c co m s Speed of light in vacuum 02 5 G m kg s Newtonian constant of gravitation 03 Qn ms Standard acceleration of gravity 04 fie kg Electron mass 05 mp kg Proton mass 06 mn kg Neutron mass 07 B kg Muon mass 27 08 1 kg Atomic mass unit kilogram relationship 09 e Elementary 0 h Js Planck constant 1
26. 38 5ATA ee parA CA Cw 4 Xn Nn 7 5ATAJ CHET ep 1 4 yw e 2ndFJ Lcp
27. 2ndF HYP Pra STAT Fcr FIX SCI ENG DEG RAD GRAD STAT M DEG 2 3 1 RAE 2 3 2
28. x y z 3 VLE D determinant e e 2neF cA e D ENT ENr 2ndF ENT ENT 42 wong C2 9 223 2 3 4 5 6 7 5 6 ENT 7 xc ENT x 1 y CENT 2 det D ENT det D 3 wood 2 C1 2 9 1 ENT 1 ENT 1 9 ENT 6x 6y z 217 6 ENT 6 ENT 1 4 ENT 17 ENT 14x 7y 22242 14 ENT 7 4 ENT 2 ENT 42 ENT x 3 238095238 ENT 1 638095238 zz ENT z 7 4 det D ENT det D 105 2 3 2 z 2 px c 0 3 ax3 bx cx d 0 2 3 1 lt a
29. 2ndF pow 2 ENT 0 1 ENTr oNe 2ndF ranoov ENT 0 99 ENr onc 2ndF 5pRej 90 rad 90 1 570796327 gl 100 2r 90 10 8 0 8 53 13010235 rad 0 927295218 g 59 03344706 53 13010235 8 AF X Y M ANS 1 20 ANS M A F X O O O x x x x x O x xX
30. 2 5 8 16 1 in 2 cm in 2 cm In cm 3 ft gt m ft 4 m ft m 5 ydom yd 6 yd m 7 mile km mile 8 km mile km 9 n mile m n mile 0 m gt n mile m 1 acre 2 m acre SESJE 2 m 2 acre m 3 oz gt g oz 4 g 02 g 5 lb gt kg Ib 6 kg gt Ib kg 7 F SARE 8 gt F C PRE 9 gal US 2L gal US HOY US 20 L gal US L 21 gal UK 2L gal UK HOY UK 22 L gal UK L 23 floz US gt mL fl oz US US 24 mL 5 fl oz US mL 25 floz UK gt mL fl oz UK UK 26 mL 5 fl oz UK mL 27 J 2 cal J 28 cal gt J cal 30 29 J calis J 30 calis 2 J calis 15
31. e K e sin60 ne Csin 60 0 866025403 cos serur _o J J eos 4 4 0 707106781 16 11 9 2 2ndF tan7 1 C 50 Gru Co Ce e cos 90 0 90 0 0 180 Rzgzit oses 2 ar d 100 x 0 x 100 0 lt S 0 200 cosh 1 5 oNcJ cos 1 5 C Chyp sinh 1 5 sin 1 5 JL x C 20 08553692 ias aroF 5 7 C937 0 0 895879734 In 20 n 20 2 995732274 log 50 leg 50 C 1 698970004 e 2ndF 3 20 08553692 1017 2ndF 17 C 50 11872336 Nb 7 6 7 0 309523809 82 52 8 CY 2 3 gt 4 5 x 0 2 024 984375 2 12003094 H CE 6 447419591 B 8 COCE 512 N49 81 2ndE N 49 4 2ndE 81 8427 27 4 4 2ndF 24 10P3 10 720 5 2 10 500 25 500 25 125 120 400 120 400 30 500 500x25 500 25 625 400 400x30 400 30
32. d dx 3 0 5 x8 6 2 x CX 4 C 0 5 JC x JU 6 x JU x dx 0 00002 2ndF 2 50 x 3 ENT ENT 0 001 ENT 130 5000029 dx 0 001 f 02 5 dx urea X 5 n 100 2 ENT 8 ENT ENT 138 n 10 ENT ENT ENT 10 ENT 138 4 2 5 8 16 e Y 19 2ndF o ENT 0 0 999 3 ENT 2ndF 1 ENT 1 6 ENTJ oNc
33. CNST log in Exp DEG 1 0 6 0 60 DMs 6 0 Degree Minute Second RCL STO DATA cp Rannon an 2 PEN 5 gt 8 DEG 1 0 gt HEX 1 6 Degree Radian Grade 100 ANS FIFS ENT 61
34. E 15 Time Decimal and Sexagesimal Calculations Coordinate Conversions Calculations Using Physical Constants Metric Conversions Calculations Using Engineering Prefixes Modify Function Solver Function SIMULATION CALCULATION ALGB Performing Calculations ey A STATISTICAL CALCULATIONS Single variable statistical calculation Linear regression calculation Exponential regression Logarithmic regression Power regression and Inverse regression calculation E 24 Quadratic regression calculation Data Entry and Correction Statistical Calculation Formulas Normal Probability Calculations SIMULTANEOUS LINEAR EQUATIONS E 29 QUADRATIC AND CUBIC EQUATION SOLVERS E 30 COMPLEX NUMBER CALCULATIONS Complex number entry ERROR AND CALCULATION RANGES sj m Error Codes and Error Types Calculation Ranges BATTERY REPLACEMENT Notes on Battery Replacement When to Replace the Batteries Cautions Replacement Procedure Automatic Power Off Function SPECIFICATIONS ee E2 INTRODUCTION Thank you for purchasing the SHARP Scientific Calculator Model EL 509F After reading this manual store it in a convenient location for future reference Operational Notes e Do not carry the calcu
35. ex seF In In F 2 2naF am X X X Gve 5raF GFF A FXY STAT F1 F4 VAR rdf o Co 117 0 795 RESET O X 52 x sx ox n Xx EX y sy oy Xy a b c 3
36. en x x i gt 7 Z je 0 e M 44 e 0 e MarH _o_ MODE 3 12 69 7 15 12 6 Ci C 7 C 15 Ci 11 4 11 4 DJCEJEl 8 2ndF 5 2ndF x 8 6x 7 9i 6 x JLC 7C 9C 5 8i 5 8 C 222 2ndF 606 i 16x sin30 16 x JCC Csin 30 icos30 sin60 i J cos 30 1 JC Csin 60 icos60 i JCcos 60 JC 13 85640646 2ndF 8 1 andF re 8 CZ 70 C 12 2 25 Jtr 18 5408873 2ndF lt 0 2 42 76427608 01 2 72 71 8 01 70 12 12 02 25 r 0 1 9 onde 1 C C7 ICED 1 1 2ndF re r 1 414213562 r 0 2ndF
37. 1 h 2 f a 2h f a 4h f a N 2 h f b N 2 lt lt When performing integral calculations Integral calculations de pending on the integrands and subintervals included require longer calculation time During calculation Calculating will be dis played To cancel calcula tion press Note that 2 there will be greater inte x x 5 gral errors when there are Xs large fluctuations in the integral values during minute shifting of the integral range and for periodic functions etc where positive and negative integral values exist depending on the interval For the former case divide integral intervals as small as possi ble For the latter case separate the positive and negative val ues b a N n Differential calculation f x lt E 11 Following these tips will allow results of calculations with greater accuracy and will also shorten the calculation time d dx x4 0 5 3 6 2 x 4 0 5 ce Cx JU 6 apa x x dx 0 00002 2ndF 2 50 2 ENT 3 ENT 0 001 ENT 130 5000029 dx 0 001 f 2 5 dx onc 5 n 100 2 ENT 8 ENT ENT 138 n 10 ENT ENT ENT 10 ENT 138 Random Function The Random function has four settings for use in the normal and statistics mode This function
38. A V Y t B 6 C g A Y sinB C Y 2 XH o J o A ALPHA _ v sin 8 c yY Cx C 2 2ndF ALGB 2O0 ENT 2 5 ENT 50 cNsT O3 ENT 7 656440906m h 50 i z R2 ol zc ic tan o 2rf R 120 Q L 4 H C 3 uF f 60 Hz Z 90 M w 2nf 2 X n X 60 Y al MX U Xx 4 1 M x3x10 9 Z VRZ Y lt i tan 127 ewe Mopgl _o_ rw o JC oJ 2 zndF x x 60 sro 376 9911184 e x JA x 3 Ep 6 2 x sto 623 7703454 CoL T Y J J120 x C Y 635 2081894 2 2naF tan v C 1200 79 110561 6 51 100 5 1 9
39. e FIX SCI ENG 0 9 TAB e e WT FIX SCI ENG gt 0512 NORMI NORM2 3 4 14 NORM 1 NORM2 2 NORM1 0 000000001 I x 9999999999 e NORM2 0 01 x 9999999999 100000 3 NORM1 100009CEJ3C 33 333 33333 gt FIX Gru C1 33 333 33333 TAB 2 Geru 2 33 333 33 gt SCD 3 33 1095 gt ENG ew C2 33
40. A F X Y sro auei RcL M M SNc sro _M C X Y X Y e SE Y gt r eeen X r x Y 9 rcL 14
41. appears Ch P and H disappear Note The hexadecimal numbers are entered by pressing nst Cx Cx and in and dis played as follows A gt B gt 4 C5f D gt o d E5f FoF In the binary pental octal and hexadecimal systems fractional parts cannot be entered When a decimal number having a fractional part is converted into a binary pental octal or hexa decimal number the fractional part will be truncated Likewise when the result of a binary pental octal or hexadecimal calcu lation includes a fractional part the fractional part will be trun cated In the binary pental octal and hexadecimal systems negative numbers are displayed as a complement 15 DEC 25 5BIN 2ndF 25 2ndF BN 110015 HEX 1AC 2ndF HEX BIN 2ndF BIN 110101100 PEN 2ndF PEN 3203 OCT 2ndF ocT 654 DEC 2ndF DEC 428 BIN 1010 100 2ndF 8N 1010 100 x11 11 1 100105 BIN 111 2NEG NEG 111 7777777007 5 HEX 1FF 2ndF HEX 1FF 2 OCT 512 512 15119 2 2ndF 9 349 2FEC oNc sro M 2ndF eHEX 2FEC 2C9E A 2C9E M 34E 2000 2000 1901 B 1901 M
42. 1011 oN C 2ndF BN 1011 AND 101 BIN 101 1 OR 200 oR C3 db NOT 10110 2ndF BN NOT 10110 C 1111101001 BIN 24 XOR 4 OCT 24 4 C 20 B3 XNOR 2ndF HEX 2D HEX 20 FFFFFFFF61 DEC 2ndF DEC 159 Time Decimal and Sexagesimal Calculations Conversion between decimal and sexagesimal numbers can be performed and while using sexagesimal numbers conversion to seconds and minutes notation The four basic arithmetic operations and memory calculations can be performed using the sexagesimal system Notation for sexagesimal is as follows 129347 5518 degree second minute E 16 12 39 18 05 oNc 1 MS 39 18 05 10 72 65507389 123 678 60 123 678 123 40 40 8 3h30m45s oms 30 0 45 C 6 oms 6h45m36s 60 45 36 C 10 16 21 1234 56 12 1234 56 12 0 0 34 567 60 0 ows 0 oms 34 567 1234 56 47 3h45m 3 oms 45 1 69 1 69h 60 2 3 36 sin62 12 24 10 Csin 62 oms 12 ows 24 0 884635235 24 24 86 400 1500 0 ows 0 ows 1500 25 Coordinate Conversions Before performing a calculation select the angular unit Y 56 r 0220 Rectangular coord Polar coo
43. 31 44 jat 3 abe 1 2 es 4 3 4 5 6 a xxx 4 833333333 dd 29 6 103 2ndF 10 2 3 4641588834 e J 7 se 5 5 16807 3125 A 1 8 Cx 1 206 3 8 C 1 2 1 64 nd I 64 ate 225 C 8 15 225 2 _ CC 2 3 CC93 C34 Q3 C99 8 81 zie 12 ae 23 12 23 1 23 1 oms 2 oms 3 a 2C 0311 5 1x10 ama 1 89 3 5 2 Ee 8 C7 1 2 7 7 sro C 7 4 4 7 A r 1254 1 25 2 5 1 65 ia 1 13 20 5 4 42 5 6 42 23 2 5 8 10 16 2 5 8 10 16 2 5 8 16 AND OR 53 5 XOR XNOR 2ndF 8N 2 2 2ndFJ PEM 5 PP 5 2ndF eo
44. e GNc 5ATAJ 30 Co 0 40 30 1 40 40 2 2 50 50 3 4 r 30 Cv OCv 45 45 3 X2 45 45 Cy N2 3 45 60 Cy 60 X3 60 39 JRE 1 2 y a bx y aee y atbelnx 1 r EX n2 OO n x2 nx2 Ex x1 Xp oO SEES Dr 0 5_ _ oy x 5 1 1 2 2 Xnyn ny 1 2 yn 1 Ey 12 yn e 1X10 9 e 0 e 2 40 t 0 1 E tz 0 D AN 2 2 oo 0 7 sx dU E 2 opt t2 0 t 0 20 N AW 22 oo 0 t oo oo 7
45. C y y x 1 z 5 2 2 a bx c Z r e 2 2naF e AF ReL 36 1 o 0 1 80 2 DATA 3 75 3 4 50 5 75 71428571 RCL Cox 12 37179148 n 7 RCL Ex 530 Ses 417200 sx RcL C sx 13 3630621 s 178 5714286 x J95 10 x10 50 ar 10 C 50 C 64 43210706 x 60 P t 60 0 1 0 102012 t 0 5 gt Rit 0 5 57 13 0 691463 0
46. E 10 10 11 12 i es pam 18 19 20 20 DI LI 22 23 2 5 8 10 16 24 10 60 26 Dacp 26 tk 27 30 0 31 MDF 32 a RE O 1 n 1 36 36 2 NM 36 Ny 38 E E 40 EYN Pur S RE ELE EE AA 42 OOS 42 43 44 44
47. lk 46 S N R 53 53 53 54 i 57 SS 57 cheat sete TE 57 kk 57 55 M pr Pp 64 e
48. 31 J calir J 32 2 J 33 hp gt W hp 34 W hp W 35 ps gt W ps 36 W ps W 37 kgf cm gt Pa 38 Pa 5 kgf cm Pa 39 atm gt atm 40 Pa gt atm Pa 41 mmHg 1 mmHg 1 Torr 42 Pa gt mmHg Pa 43 kgf m J 44 J 5 kgf m J 125yd m 125 2ndF CONV 5 C 114 3 2 5 8 16 9 k 1 7 103 M 1 106 6 MATH 1 109 T 72 MATH 1 1012 m xU MATH 1 10 3 u MATH 1 10 6 n MATH 1 10 9 MATH 1 10 12 f MATH 1 10 15 100mx10k 100 MATH 10 17000 31 MDF AX10 14
49. Ewr e ENT 2 ENT e 2ndF e Error 2 43 vog C2 3x 4x 95 0 ENT 4 ENT 4 95 x1 ENT 5 x2 ENT 6 333333333 2ndF ENT 5 eps C3 5 3 4x 3x 7 0 5 ENT 4 ENT 3 ENT 7 1 ENT 1 233600307 2 ENT 0 216800153 2ndF gt 1 043018296 x3 ENT 0 216800153 2ndF gt 1 043018296 Mop _3 2 Gy 2ndF C9
50. 11 534 120320 211 8 2ndF 5 2 x 8 6x 7 9i x 6CxJCC 7 C239 C IO 5 87 5 8 222 2 gt 606 16x sin30 16 x JCC sin 30 icos30 sin60 i_ cos 30 _ 60 icos60 i_j eos 60 0 J J x 13 85640646 2ndF gt 8 andF re 8 2 70 12 z 25 Jt 18 5408873 2ndF lt 0 2 42 76427608 r1 8 01 70 72 12 02 25 1 r 0 1 2 gt 1 JC N 1 J 2ndF 79 r 1 414213562 0 2 2ndF 0 245 2ndF J2 8C i JL JL 2 31 hd 5 2ndF 12 i LEN C 1 C C i JOC J nsF Cx C p 0 5 1 7 2ndF y 0 5i CONJ 5 27 MATH 0 NCC 5C4 2Ci JC 5 by 31 ERROR AND CALCULATION RANGES Errors An error will occur if an operation exceeds the calculation ranges or if a mathematically illegal operation is attempted When an error occurs pressing 4 automatically moves the cursor back to the place in the equation where the error oc curred Edit the equation or press to clear the equation Error Codes and Error Types Syntax error Error 1 An attempt was made to perform an invalid operation Ex 2 5 Calculation error Error 2 The absolute value of an intermediate or final calculation result equals or exceeds 1099 An attempt was ma
51. Press the RESET switch on the back with the tip of a ball point pen or similar object only in the following cases Do not use an object with a breakable or sharp tip Note that pressing the RESET switch erases all data stored in memory When using for the first time After replacing the batteries Toclear all memory contents When an abnormal condition occurs and all keys are inopera tive E3 If service should be required on this calculator use only a SHARP servicing dealer SHARP approved service facility or SHARP repair service where available Hard Case a DISPLAY Equation Symbol Display 1294554 1890 Mantissa Exponent During actual use not all symbols are displayed at the same time Only the symbols required for the usage under instruction are shown in the display and calculation examples of this manual lt gt Appears when the entire equation cannot be displayed Press 4 to see the remaining hidden sec tion xylrO Indicates the mode of expression of results in the complex calculation mode a Indicates that data can be visible above below the screen Press A v to scroll up down the view 2ndF Appears when is pressed HYP Indicates that has been pressed and the hyper bolic functions are enabled If are pressed the symbols 2ndF HYP appear indicating that in verse hyperbolic functions are enabled AL
52. Stat 3 LOG Stat 4 PWR Stat 5 ANV Stat 6 x sx x ox n Xx 5 2 y sy Xy zy Z r a b 20 2 35 1 1 2 c y x 2
53. lt 45 204 J _C J2 2 3 C i JC JL 2 342 C d 5 2ndF bl 72 CJ 1 C Ci JO 18 11 111 05 1 2ndF 0 5 CONJ 5 27 JCC 5C 2Ci JC C 5 2ndF bl 2i 45 BUT A B C B 0 A C D BC a 1 A 0 Eu Co J o 20 sn 60 17 32050808m b 20 cesJ60 10m a e b B zD tan a tang Oa 8 sin 9 75 c sing e a B tan9 b a tan 9 _ AR cos 9 c II 2 BC 9 9 2 b A sin c E ten sin 8 1 Sain
54. sx 13 3630621 sx C 178 5714286 95 95 101 sx amp 10 50 Gum Cex CX 10 50 64 43210706 x 60 gt P t maTH _1_ 60 war9 o JC 0 102012 t 0 5 R t warg 3 0 5 2 CO 0 691463 25 x 0 2 5 1 2 5 DATA 2 12 24 3 21 40 40 3 4 21 40 15 25 DATA 5 21 40 RL Ca 1 050261097 15 25 RcL C b 1 826044386 0 995176343 ReL C sx 8 541216597 ReL C 15 67223812 6 528394256 24 61590706 0 1 2 3 200 4 71 5 5 357506761 3 120289663 0 503334057 10 gt y 24 4880159 22 gt x 9 63201409 3 432772026 9 63201409 Data Entry and Correction Entered data are kept in memory until or mode selec tion Before entering new data clear the memory contents Data Entry Single variable data Data Data frequency To enter multiples of the same data Two variable data Data x Data y Data x Data y frequency To enter multi ples of the same data x and y E 26 Up to 100 data items can be entered With the single variable data a data item without frequency assignment is counted as one data item while an item assigned with frequency is stored as a set of two data items With the two variable data a set of data items without frequency assignment is counted as two data items while a set of items assigned
55. Slide the battery cover slightly and lift it to remove Remove the used batteries by prying them out with a ball point pen or other similar pointed device Fig 2 Install two new batteries Make sure the side is facing up Replace the back cover and screws Press the RESET switch on the back with the tip of a ball point pen or similar object Make sure that the display appears as shown below If the display does not appear as shown remove the batteries reinstall them and check the display once again Fig 1 Fig 2 D Automatic Power Function This calculator will turn itself off to save battery power if no key is pressed for approximately 10 minutes E 36 SPECIFICATIONS Calculations Internal calculations Pending operations Power source Operating temperature External dimensions Weight Accessories Scientific calculations complex number calculations equation solvers statisti cal calculations etc Mantissas of up to 14 digits 24 calculations 10 numeric values in the normal mode 5 numeric values in STAT and complex number mode Built in solar cells 3V DC Backup batteries Alkaline batteries LR44 or equivalent x 2 0 40 C 32 F 104 F 79 6 mm W x 154 5 mm D x 13 2 mm H 3 1 8 W x 6 3 32 D x 17 32 H Approx 97 g 0 22 Ib Including batteries Batteries x 2 installed operation man
56. k JK Boltzmann constant 2 Mo N A Magnetic constant 3 amp Fm Electric constant 4 Te m Classical electron radius 5 a Fine structure constant 6 m Bohr radius 7 Reo m Rydberg constant 8 Wb Magnetic flux quantum 9 Ls JT Bohr magneton 20 He JT Electron magnetic moment 21 F JT Nuclear magneton 22 Lp JT Proton magnetic moment 23 PX Olli t X Yb Mn JT Neutron magnetic moment 24 up JT Muon magnetic moment 25 Ne m Compton wavelength 26 Proton Compton wavelength 27 W m K Stefan Boltzmann constant 28 Na L mol Avogadro constant 29 m mol Molar volume of ideal gas 273 15K 101 325kPa 28 30 1 R J K Molar constant 31 F C Faraday constan 32 Re Ohm Von Klitzing constant
57. 2 A 2 B 3 2 3 ENT 3 605551275 A 2 B 5 2ndF 5 5 385164807 23 STATISTICAL CALCULATIONS Press Mopgl 1 to select the statistics mode The seven sta tistical calculations listed below can be performed After select ing the statistics mode select the desired sub mode by press ing the number key corresponding to your choice To change statistical sub mode reselect statistics mode press Mopg 1 then select the required sub mode SD Single variable statistics LINE Linear regression calculation QUAD Quadratic regression calculation EXP Exponential regression calculation LOG Logarithmic regression calculation PWR Power regression calculation INV Inverse regression calculation The following statistics can be obtained for each statistical cal culation refer to the table on the next page Single variable statistical calculation Statistics of 1 and value of the normal probability function Linear regression calculation Statistics of 1 and 2 and in addition estimate of y for a given x estimate y and estimate of x for a given y estimate x Exponential regression Logarithmic regression Power regression and Inverse regression calculation Statistics of 1 and 2 In addition estimate of y for a given x and estimate of x for a given y Since the calculator converts each formula into a linear regression formula before actu
58. 21 8 12 8101 16 24 8x2 24 E EE 1 5 8x2 x5 ALPHA 5 Ss 80 0 150x3 M 150 3 450 250 2 1 250 250 250 2 5 M JC 5 2ndF C 35 M CM RCL C M 665 1 110 110 770 26 510 26510 C RcL CY JC 241 2 750 2750 Cx Re C v JC 302 500 r gt Y 3 3 12 2 n v 28 27433388 24 24 A 24 4 6 24 3 1 60 X_ ALPHA ANS rd 3x A 60 A ALPHA ANS _ _ 32 2 Ve CS 3881 COS 6 4 ANS 70 ANS 5 75 8x2 ANS 76 ANS 256 44 37 ANS 44 37 81 YANS na C7 9 e 22 e 10
59. 5 e 100 Error 4 e 142 142 53 e 1 y In e 10 49 999999999 x 1093 0 1033 0 DEG lrl lt 10 tan x x 90 2n 1 Sin x COS x RAD 1 1 2 1090 tan x tan x 1 1 3 2n 1 GRAD x1 lt 42 x10 tan x x 100 2n 1 sinx 8 Ixiz1 tanx Jx Ix lt 101 In x log x 10 99 x lt 10709 e gt 0 10 lt x log y lt 100
60. 80 42 a 2 NOS tane D 9 tan b V rero GS GT 9 0 o J o 2ndF tan7 15 24 2ndF ptg 32 0 19 38 0 e a lt cos 2 e lt sin D 41 a A B b c C 2 1 a b cC sinA sinB sinC 2 sinB _ sinC b sina 9X sinA Y E F Y sinE sinF ONE OBE 0 EETA Co o 180 40 60 80 ALPHA Y sin ALPHA E sin 2ndF ALGB 2 ENT AO ENT GO ENT 1 484454398m b 2ndF ALGB ENT 80 GO ENT 2 274316085m 48 a 14 7cm b 17 8cm 6 43 32 54 c 14
61. 120 90 1 5 5x109 x109 30 14 3 1 17250 000 Constant Calculations n constant calculations the addend becomes a constant Subtraction and division are performed in the same manner For multiplication the multiplicand becomes a constant Inthe constants calculations constants will be displayed as K 34 57 34 57 1 91 45 57 45 102 68x25 68 25 1 17700 68 40 40 C 2720 Functions Before starting calculations specify the angular unit sin60 one 60 0 866025403 T etuP _o C 1 8 1 0 cos GC JU 4C03 0 79 0707106781 tan 1 g seru o C2 2ndF tan 1 C 50 o o E 9 The range of the results of inverse trigoniometric functions 0 sin x 0 tanx 90 lt 0 lt 90 0 lt 0 lt 180 lt 0 lt 2 0 lt 0 lt 100 lt 0 lt 100 0 lt 0 lt 200 cosh 1 5 1 cos 1 5 C hyp sinh 1 5 sin 1 5 x 20 08553692 tan 4 0 895879734 In 20 2 995732274 log 50 1 698970004 20 08553692 1017 50 11872336 als 6 7 0 309523809 82 34 52 2 024 984375 1294 6 447419591 83 512 N49 81 end 49 C 4 52 8t 3V27 27 4 4 Cn C 24 10 3 1 720 5 5 2 10
62. 500 25 500 25 125 120 400 120 400 30 500 500x25 500 25 625 400 400x30 400 30 280 10 Differential Integral Functions Differential and integral calculations are only available in the normal mode For calculation conditions such as the x value in differential calculation or the initial point in integral calculation only numerical values can be entered and equations such as 22 cannot be specified It is possible to reuse the same equation over and over again and to recalculate by only changing the conditions without re entering the equation Performing a calculation will clear the value in the X memory When performing a differential calculation enter the formula first and then enter the x value in differential calculation and the minute interval dx If a numerical value is not specified for minute inter val x40 will be Ixlx10 and x 0 will be 10 from the value of the numeric derivative When performing an integral calculation enter the formula first and then enter a range of integral a b and subintervals n If a numerical value is not specified for subintervals calculation will be performed using n 100 Since differential and integral calculations are performed based on the following equations correct results may not be obtained in certain rare cases when performing special calculations that contain discontinuous points Integral calculation Simpson s rule
63. HEX 0 Sx lt 2222222222 OCT 4000000000 x 7777777777 OR 0 lt 3777777777 XOR HEX FDABF41C01 x x lt FFFFFFFFFF XNOR 0 2540 BIN 1000000000 x 1111111111 0 lt lt 111111111 2222222223 lt x lt 4444444444 NOT 0 lt lt 2222222221 4000000000 x x x 7777777777 0 lt 3777777777 HEX FDABF41C01 x FFFFFFFFFF 0 lt 2540BE3FE BIN 1000000001 x 1111111111 0 lt lt 111111111 2222222223 lt x lt 4444444444 NEG 0 Sx lt 2222222222 4000000001 x x lt 7777777777 0 lt 3777777777 HEX FDABF41C01 x lt FFFFFFFFFF 0 lt 2540BE3FF n 56 LR44 2 2 LR44 2 SAO e
64. Neutron Compton wavelength 49 First radiation constant C Wm 50 Second radiation constant mK 51 Characteristic impedance of 2 Q vacuum 52 Standard atmosphere Pa Vo 15 3m s 15 3 10 2 2ndF x Xx 10s 03 x 10 x J 643 3325 Vot 1 gt E 19 Metric Conversions Unit conversions can be performed in the normal mode when not set to binary pental octal or hexadecimal statistics mode and equation mode No Unit Remarks 1 in gt cm in inch 2 gt in centimeter 3 ft gt m ft foot 4 m ft m meter 5 yd m yd yard 6 gt yd meter 7 mile gt km mile mile 8 km gt mile km kilometer 9 n mile gt m n mile nautical mile 10 m mile meter 11 acre gt 12 m acre m square meter 13 029 9 02 14 09 02 9 dram 15 lb gt kg Ib pound 16 kg gt Ib kg kilogram 17 F gt Degree Fahrenheit 18 gt F C Degree Celsius 19 gal US 2L gal US gallon US 20 L gt gal US L liter 21 gal UK gt L gal UK gallon UK 22 L gt gal UK L liter 23 fl oz US gt mL fl oz US fluid ounce US 24 mL fl oz US mL milliliter 25 fl oz UK gt mL fl oz UK fluid ounce UK 26 mL fl oz UK mL milliliter 27 J gt cal J Joule 28
65. 0 21 9x t20 t lt 0 ROE 1 oe 22 G0 22 t 2 e P Q R lt 0 P Q R 6 41 1 2 1 2 VLE 3 1 3 VLE 2 1 woo ZIT ay by az bz ax by ax boy C2 3 1 ID ax biy dy ay by cy boy 22 do D do bz Co aax bay cz da bs e D 0 e 10 wopg _2 Mopg 2 JC 1 2 VLE 3 VLE ENT a1 ENr
66. 33 elme C kg Electron charge to mass quotient 34 h 2me m s Quantum of circulation 35 s T Proton gyromagnetic ratio 36 Hz V Josephson constant 37 eV J Electron volt 38 0C 7 K Celsius Temperature 39 AU m Astronomical unit 40 pe m Parsec 41 C 12 2 kg mol Molar mass of carbon 12 42 h Js Planck constant over 2 pi 43 Eh J Hartree energy 44 Go Conductance quantum 45 Inverse fine structure constant 46 Proton electron mass ratio 47 Mu kg Molar mass constant 48 cPIEY 2377 KYRR Ae m Neutron Compton wavelength 49 W m First radiation constant 50 mK Second radiation constant 51 7 Q Characteristic impedance of vacuum 52 Pa Standard atmosphere 29 Vo 15 3m s 15 3 x 10 12 2ndF x 10s 03 10 x C 643 3325 31 ge Vet gt
67. 7 a 43 32 54 0 17 8cm b 2 1 a b c 2bc cosADS Vb c2 2be cosA 2 2 2 2 58725 b 2 2 2 02 2 5 7 5 c Va b 2ab cosC ewe Mopgl _o_ JC oJ 2ndF Y C 14 7C x C 17 802 C 2 x 14 7C x 17 8C x 1 43 0 32 0 54 ODC 12 39480134 cm c a b BEAS sm S Ys s a s b s C 5 x at 5 2 a b C 49 onc MODE 10 8 6C 0 2 12m s 2 C C C C 10C9 JCC Cu C 980 1003 60 IO C9J 24m S Vo 20m s 50 6 2 5 h Vo 20 2 h Vot sin 2 gt 0 50 g 9 80665m s
68. and real parts by pressing gt e The results obtained by this function may include a margin of error 3x 4 95 0 x1 5 2 6 333333333 5 5 3 4 2 7 0 x1 1 233600307 x22 0 216800153 1 043018296 x32 0 216800153 1 043018296 COMPLEX NUMBER CALCULATIONS To carry out addition subtraction multiplication and division using complex numbers press to select the complex number mode Results of complex number calculations are expressed in two modes Rectangular coordinate mode xy appears 2ndF re Polar coordinate mode r0 appears Complex number entry Rectangular coordinates x coordinate y coordinate i or x coordinate Ci y coordinate 2 Polar coordinates r 0 r absolute value 8 argument 2 30 On selecting another mode the imaginary part of any complex number stored in the independent memory M will be cleared Acomplex number expressed in rectangular coordinates with the y value equal to zero or expressed in polar coordinates with the angle equal to zero is treated as a real number e Press MATH 0 to return the complex conjugate of the specified complex number 12 61 7 15 12 6 CCF 704 15 Ci C 11441
69. cal gt J cal calorie 29 J calis J Joule 30 calis gt J calis Calorie 15n C 31 J J Joule 32 calit gt J LT calorie E 20 No Unit Remarks 33 hp gt W hp horsepower 34 W hp W watt 35 ps gt W French horsepower 36 W gt ps W watt 37 kgf cm Pa 38 Pa gt kgf cm Pa Pascal 39 atm atm atmosphere 40 atm Pa Pascal 41 mmHg Pa 1 mmHg 1 Torr 42 Pa mmHg Pa Pascal 43 kgfem 5 J 44 J gt kgfem J Joule 125yd m 125 2 Conv 5 114 3 Calculations Using Engineering Prefixes Calculation can be executed in the normal mode excluding N base using the following 9 types of prefixes Prefix Operation k kilo MATH 0 M Mega MATH G Giga MATH T Tera MATH m mill MATH u micro MATH n nano MATH Ce pico MATH f femto MATH 100mx10k 100 1 10 Co 17000 E 21 Modify Function Calculation results are internally obtained in scientific notation with up to 14 digits for the mantissa However since calculation results are displayed in the form designated by the display notation and the number of decimal places indicated the inter nal calculation result may differ from that shown in the display By using the modify function the internal value is converted to match that of the display so that the displaye
70. existing memory value Press ovc sro M to clear the independent memory Last answer memory ANS The calculation result obtained by pressing or any other calculation ending instruction is automatically stored in the last answer memory Note Calculation results from the functions indicated below are auto matically stored in memories X or Y replacing existing values Random function Y memory r xy X memory r or x Y memory 0 or y Use of or will recall the value stored in memory using up to 14 digits onc 8 2 sroJ C 16 24 8x2 24 Cx ar OO 15 8x2 x5 M Ux 5C 80 oN c sro M 0 150x3 M 150 3 450 4 250 Me Mi 250 250 250 5 M CX 5 2ndF 35 M Cu RL Cw 665 1 110 110 110 26 510 26510 eee 241 2 750 2750 ReL C v 302 500 13 r gt Y 3 sr 3 aera CY Cel 28 27433388 24 24 DCO 404 6 C33C 39 24 Cx em 4S 60 C x ALPHA ANS XAM60 ECE 32 2 Entry of the multiplication procedure is omitted between and a variable Chain Calculations The previous calculation result can be used in the subsequent calculation However it cannot be recalled after entering multiple instructions 6 4 ANS 6 40 10 ANS 5 5 75 8x2 ANS 8 2 76 ANS 256 4
71. point Fixed decimal point Scientific notation and Engineering notation When the FIX SCI or ENG symbol is displayed the number of decimal places TAB can be set to any value between 0 and 9 Displayed values will be reduced to the corresponding number of digits Setting the Floating Point Numbers System in Scientific Notation Two settings are used to display a floating point number NORM1 default setting and NORM2 A number is automatically dis played in scientific notation outside a preset range NORM1 0 000000001 lt Ix lt 9999999999 e NORM2 0 01 lt lx lt 9999999999 100000 3 NORM1 100000 3 33 333 33333 EACE 33 333 33333 TAB 2 2 2 33 333 33 SCI Gru 1 C1 3 33 x10 ENG 1 C2 33 33 x10 NORM1 1 C3 33 333 33333 3 1000 INORM1 1000 0 003 NORM2 CEEDED 3 x10 8 gt NORM1 GE C3 0 003 SCIENTIFIC CALCULATIONS Press o to select the normal mode n each example press to clear the display If the FIX SCI or ENG indicator is displayed clear the indicator by selecting NORM from the SET UP menu Arithmetic Operations The closing parenthesis just before or may be omitted 45 285 3 45 285 13 140 18 6 _ CC 18 6 15 8 15 18 1 3 428571429 42x 5 120 42 Q EA 5 C
72. to or greater than 1 10199 The denominator is zero Anattempt is made to take the square root of a negative number No solution exists in the quadratic regression calculation nx2 ox n 2 nx2 x4 t x nai EX 1 x _ as ny y y 271722 1 1 X2y2 XnYyn Ey y4 y2 yn 1 Ey y4 y2 Yn Normal Probability Calculations e P t Q t and R t will always take positive values even when 0 because these functions follow the same principle used when solving for an area Values for P t Q t and R r are given to six decimal places 221 ft x t2 0 t 0 PO dx 2 0 t t 0 00 fi AN co 0 t oo eo 7 0 21 po x t20 t lt 0 di lt 0 t E 1 0 Standardization conversion formula E 28 SIMULTANEOUS LINEAR EQUATIONS Simultaneous linear equation with two unknowns 2 VLE or with three unknowns 3 VLE may be solved using this function 2 VLE Co ID ai b bay C2 az b2 3 VLE 2101 ax biy ds ay by bona D E Day C3z ds gs bs cs If the determinant D 0 an error occurs If the absolute value of an intermediate result or calculation result is 1 10 9 or more an error occurs C
73. 2 engineering prefixes 3 Functions preceded by their argument 1 x2 etc Y Implied multiplication of a memory value 2Y etc Functions fol lowed by their argument sin cos etc Implied multiplication of a function 2sin30 etc 8 nCr nPr x 40 AND 42 OR XNOR 43 M M M DEG PRAD GRAD DATA 19 xy and other calculation ending instructions f parentheses are used parenthesized calculations have precedence over any other calculations INITIAL SET UP Mode Selection o Normal mode NORMAL 1 Statistic mode STAT Equation mode EQN Complex number mode CPLX SET UP menu Press to display the SET UP menu Amenu item can be selected by moving the flashing cursor by using DCO then pressing DRG FSE C key 0 1 pressing the number key correspond ing to the menu item number E 7 f a or is displayed on the screen press or to view the previous next menu screen Press to exit the SET UP menu Determination of the Angular Unit The following three angular units degrees radians and grades can be specified DEG Press o o RAD rag Press GRAD Press 7 Selecting the Display Notation and Decimal Places Four display notation systems are used to display calculation results Floating
74. 2 5 7 2 5 2 12 24 3 21 40 4 21 40 5 21 40 1 050261097 15 25 1 826044386 0 995176343 8 541216597 15 67223812 3 gt y 6 528394256 46 gt x 46 2ndF 24 61590706 37 Se 0 41 DATA 1 13 BATA 2 5 2 5 2 3 23 200 23 62 200 4 15 71 15 71 5 5 357506761 80 15 3 120289663 0 503334057 x 10 gt y 10 24 4880159 22 gt x 22 9 63201409 3 432772026 9 63201409 2ngF ca 1 aTa e para 2 x amp y para x y ex 5ATA 2 e 100 1 1 2 2 2 3
75. 280 17 BilC wong o x 2Z e x d x 0 dxcldx 1075 0 DES dx 10 e a b mn n 100 e X e d n
76. 33X1093 gt NORM1 GUC ICS 33 333 33333 3 1000 1 3100C 0 003 gt NORM2 3 10 gt NORM1 Giro C3 0 003 15 e voog o e oNc e FIX SCI ENG NORM1 DEG 45 285 3 45 C 285 3 140 18 6 _ CC 18 6 ODC 15 8 15 18 1 3 428571429 42x 5 120 42 X 4 5 C 120 C 90 6G5 6x10 4x104 5 Ep 3 4 3 1 172507000 34 57 34 57 91 45 57 45 J 102 68x25 68 25 17700 68 40 40 1 27720 e Mr _ e
77. 4 37 ANS 44 37 C2 81 VANS C 9 Fraction Calculations Arithmetic operations and memory calculations can be performed using fractions and conversion between a decimal number and a fraction e If the number of digits to be displayed is greater than 10 the number is converted to and displayed as a decimal number 1 4 80 3 1 abc 2 5 4 Ce 3 4 5 6 a xxx 4 833333333 29 6 10 100 2 zz 3 4647588834 Z 7 GR 5 C9 5 C2 16807 3125 1 1 8 1 3 8 7 2 14 2ndF J 64 a 225 8 15 225 23 _ CC 20 300 3 CC9 30 409 C 8 81 1 2 rm 1 2 ss 2 3 12 23 TET 2 1 os 2 oms 3 2 0 31 1 5 1 10 _ zo 1 Es 3 2 3 C7 1 2 A 7 7 sro C 7 4 Ce ECA C 47 1 25 2 1 25 2 5 1 65 la 386 1 13 20 4r9r6 4 Binary Pental Octal Decimal and Hexadecimal Operations N Base Conversions can be performed between N base numbers The four basic arithmetic operations calculations with parentheses and memory calculations can also be performed along with the logical operations AND OR NOT NEG XOR and XNOR on binary pental octal and hexadecimal numbers Conversion to each system is performed by the following keys h appears CP appears
78. C Di AC BD BC AD Capes de C 0 0 DEC BIN PEN OCT gt XOR XNOR DEC x1 9999999999 BIN 1000000000 lt x lt 1111111111 0 lt lt 111111111 PEN 2222222223 lt lt 4444444444 0 lt x lt 2222222222 OCT 4000000000 lt x lt 7777777777 0 lt 3777777777 HEX FDABF41C01 x lt FFFFFFFFFF 0 lt lt 2540BE3FF E 34 Function Dynamic range BIN 1000000000 lt x lt 1111111111 0 lt lt 111111111 2222222223 lt lt 4444444444 NOT 0 lt x lt 2222222221 OCT 4000000000 lt x lt 7777777777 O lt x lt 3777777777 HEX FDABF41C01 x x lt FFFFFFFFFF 0 lt lt 2540 BIN 1000000001 xx x 1111111111 0 lt lt 111111111 PEN 2222222223 lt lt 4444444444 NEG 0 lt x lt 2222222222 OCT 4000000001 lt x 7777777777 O lt x lt 3777777777 HEX FDABF41C01 x x lt FFFFFFFFFF 0 lt lt 2540BE3FF r integer BATTERY REPLACEMENT Notes on Battery Replacement Improper handling of batteries can cause electrolyte leakage or explosion Be sure to observe the following handling rules Replace both batteries at the same time Do not mix new and old batteries Make sure the new batteries are the correct type When installing orient each battery properly as indicated in the calculator Batteries are factory installed before shipment and may be ex
79. PHA Appears when STAT VAR sro or RCL is pressed FIX SCI ENG Indicates the notation used to display a value DEG RAD GRAD Indicates angular units Appears when statistics mode is selected M Indicates that a value is stored in the independent memory Indicates that the calculator is waiting for a numerical value to be entered such as during simulation calcula tion 4 Appears when the calculator shows angle as the result in the complex calculation mode 7 Indicates an imaginary number is being displayed in the complex calculation mode BEFORE USING THE CALCULATOR Key Notation Used in this Manual In this manual key operations are described as follows ex p specify e To specify In To specify Functions that are printed in orange above the key require to be pressed first before the key When you specify the memory press first Numbers for input value are not shown as keys but as ordinary numbers Power On and Off Press to turn the calculator on and to turn it off Clearing the Entry and Memories Operation Entry M A F X Y STAT Display 1 4 ANS STAT VAR Q x O O O O RESET switch O O O O Clear X Retain Statistical data entered data 2 OX 27 Xy r d b c 3 All variables are cleared 4 This key combination functions the same as the
80. RESET switch E 5 Memory clear key Press to display the menu 0 clear all variables M A F X Y ANS STAT VAR press o ENT To RESET the calculator press 1 o or 1 J ENT The RESET operation will erase all data stored in memory and restore the calculator s default setting Entering and Correcting the Equation Cursor keys e Press 4 or P to move the cursor You can also return to the equation after getting an answer by pressing 4 See the next section for using the A and v keys See SET UP menu for cursor use in the SET UP menu Insert mode and Overwrite mode in the Equation display Pressing Switches between the two editing modes insert mode default and overwrite mode A triangular cursor indicates that an entry will be inserted at the cursor while the rectangular cursor indicates to overwrite preexisting data as you make entries Toinsert a number in the insert mode move the cursor to the place immediately after where you wish to insert then make a desired entry In the overwrite mode data under the cursor will be overwritten by the number you enter The mode set will be retained until the next RESET operation Deletion key Todelete a number function move the cursor to the number function you wish to delete then press DEL If the cursor is located at the right end of an equation the key will function as a back spac
81. SHARP EL 509F EJTIK A e amp lbl amp sR o Jc BO Dc d ec WE
82. al calculation takes place it obtains all statistics except coeffi cients a and b from converted data rather than entered data Quadratic regression calculation Statistics of 1 and 2 and coefficients a b c in the quadratic regression formula y a bx cx For quadratic regres sion calculations no correlation coefficient r can be ob tained When there are two x values press 2ndF gt When performing calculations using a b and c only one nu meric value can be held E 24 X Mean of samples x data 5 Sample standard deviation x data 2 Or Population standard deviation x data n Number of samples Sum of samples data Xx Sum of squares of samples x data y Means of samples y data sy Sample standard deviation y data oy Population standard deviation y data of samples data 2 of squares of samples y data Sum of products of samples r Correlation coefficient a Coefficient of regression equation b Coefficient of regression equation Coefficient of quadratic regression equation Use and to perform a STAT variable calculation MODE Co 0 95 1 80 2 DATA 3 75 3 4 50 5 RcL C X 75 71428571 RCL Cox 12 37179148 n 7 RCL 530 x 417200 sx
83. cannot be selected while using the N Base function To generate further random numbers in succession press ENT Press to exit The generated pseudo random number series is stored in memory Y Each random number is based on a number series Random Numbers A pseudo random number with three significant digits from 0 up to 0 999 can be generated by pressing 2ndF expo ENT Random Dice To simulate a die rolling a random integer between 1 and 6 can be generated by pressing ENT Random Coin To simulate a coin flip O head or 1 tail can be randomly generated by pressing 2ndF weo 2 ENT Random Integer An integer between 0 and 99 can be generated randomly by pressing 2ndF wwos ENT Angular Unit Conversions Each time are pressed the angular unit changes in sequence 90 rad 90 1 570796327 gt g 100 90 10 8 08 1 53 13010235 rad 0 927295218 gt g 59 03344706 53 13010235 E 12 Memory Calculations Mode ANS M A F X Y NORMAL STAT O x x EQN x x x CPLX O O x Available X Unavailable Temporary memories A F X and Y Press and a variable key to store a value in memory Press and a variable key to recall a value from the memory To place a variable in an equation press and a variable key Independent memory M In addition to all the features of temporary memories a value can be added to or subtracted from an
84. cr 8 8 2ndF HEX 163 FEE U amp d CH DuRn amp 16 QndF DEC 10 10 So 17 g HISHAET 16 10 10 15 A F C3 Ge ox AF AH Cot EOE Bob Dod FoF 24 10 2 5 8 16 2 5 8 16 2 53 8 16
85. d value can be used without change in subsequent operations 5 9 5 8 1 C o 2 1 ANSx9 5 19 1 0 6 FIX TAB 1 ST 5 0 5 C 9 C vF 0 6 9 5 4 1 8 5 5555555555555 10 9 2 0 6x9 Solver Function The x value can be found that reduces an entered equation to 0 This function uses Newton s method to obtain an approxima tion Depending on the function e g periodic or start value an error may occur Error 2 due to there being no convergence to the solution for the equation The value obtained by this function may include a margin of error If it is larger than acceptable recalculate the solution after changing Start and dx values Change the Start value e g to a negative value or dx value e g to a smaller value if no solution can be found Error 2 morethan two solutions appear to be possible e g a cubic equation toimprove the arithmetic precision e The calculation result is automatically stored in the X memory Performing Solver function Press o Input a formula with an x variable Press Co Input Start value and press ENT The default value is O Input dx value minute interval 6 Press ENT E 22 sin x 0 5 acpHa _ x JC 0 5 Start 0 Co 0 30 Start 180 180 150 SIMULATION CALCULATION ALGB If yo
86. de to divide by 0 or an intermediate calcula tion resulted in zero The calculation ranges were exceeded while performing calcula tions Depth error Error 3 The available number of buffers was exceeded There are 10 buffers for numeric values and 24 buffers for calculation instruc tions in the normal mode 5 buffers in STAT mode and complex number mode Data items exceeded 100 in the statistics mode Equation too long Error 4 e The equation exceeded its maximum input buffer 142 charac ters An equation must be shorter than 142 characters E 32 Calculation Ranges Within the ranges specified this calculator is accurate to 1 of the least significant digit of the mantissa However a calculation error increases in continuous calculations due to accumulation of each calculation error This is the same for V 101 e In etc where continuous calculations are performed internally Additionally a calculation error will accumulate and become larger in the vicinity of inflection points and singular points of functions Calculation ranges 1039 9 999999999 10 and 0 If the absolute value of an entry or a final or intermediate result of a calculation is less than 10 9 the value is considered to be 0 in calculations and in the display Function Dynamic range DEG 1 1 109 tan x I x 90 2n 1 sin x COS x RAD lx I lt ggg x 109 tan x tanx lx
87. e key Multi line Playback Function Previous equations may be recalled in the normal mode Equa tions also include calculation ending instructions such as and a maximum of 142 characters can be stored in memory When the memory is full stored equations are deleted in the order of the oldest first Pressing A will display the previous equation Further pressing A will display preceding equa tions after returning to the previous equation press to view equations in order In addition 2ndF A can be used to jump to the oldest equation e To edit an equation after recalling it press C The multi line memory is cleared by the following operations 2ndF including the Automatic Power Off feature mode change memory clear 2ndF McLR RESET E6 2ndF Rawon ALPHA RCL ANS constant calculation differ ential integral calculation chain calculation angle unit con version coordinate conversion N base conversion numeri cal value storage to the temporary memories and independ ent memory solver function and simulation calculation 3 5 2 3CC 5 2 C 21 3x5 2 5 2 17 3x5 3x2 5 2 21 sndF 21 39 17 28 21 39 17 Priority Levels in Calculation Operations are performed according to the following priority 1 Fractions 1r4 etc 2
88. ey 0 0 1070 y 0 x n 1 0 lt 1 1 lt 1 21 1 0 10 lt x log lt 100 gt 0 10 lt log y lt 100 x 0 e 0 0 lt lt 10 y y 0 2 1 1 0 lt 1 1 lt 1 x20 10 lt loglyl lt 100 e 10 lt x lt 230 2585092 105 10 lt x lt 100 54 SiN COSN x lt 230 2585092 tanh x sinh x lt 1099 cosh x 1 lt x lt 10 tanh x Ixl 1 x 10 1x lt 2 15443469 1033 0 lt 101 x x1 10 x 0 n 0 n 69 0 r lt n 9999999999 nPr 100 cbr 10 0 lt 9999999999 nCr 0srs69 100 i mie 10 DEG D M S 0 0 0 00001 lt x lt 10000 xyor 0 N x y lt 101 0 lt 1010 DEG 101 lt 10 mE 10 RAD eae GRAD 10110 Q x 10 DEG RAD GRAD gt DEG lt 101 DRG Ph RAD gt GRAD 1 1 lt 2 10 A Bi C Di IA Cl lt 10 1 01 lt 10 A4Bi C4Dj 1 lt 101 IB DI 10 A Bi x C Di AC BD lt 10 AD lt 10 A Bi C Di AC BD C D C D 0 100 55 DEC DEC Ixl 9999999999 BIN BIN 1000000000 x 1111111111 0 lt lt 111111111 OCT PEN 2222222223 lt x lt 4444444444
89. h Js 11 Boltzmann constant k 12 Magnetic constant Ho NA 13 Electric constant amp 14 Classical electron radius Te m 15 Fine structure constant a 16 Bohr radius A m 17 Rydberg constant Reo m 18 Magnetic flux quantum Wb 19 Bohrmagneton JT 20 Electron magnetic moment He JT 21 Nuclear magneton JT 22 Proton magnetic moment JT 23 Neutron magnetic moment Un JT 24 Muon magnetic moment JT E 18 No Constant Symbol Unit 25 Compton wavelength 26 Proton Compton wavelength Ae p m 27 Stefan Boltzmann constant W m 28 Avogadro constant Na L mol 29 Molar volume of ideal gas Vin m mol 273 15 K 101 325 kPa 30 Molar gas constant R J mol KT 31 Faraday constant F C 32 Von Klitzing constant Ry Ohm 33 Electron charge to mass quotient elme C kg 34 Quantum of circulation hl2me m s 35 Proton gyromagnetic ratio SI 36 Josephson constant K Hz V7 37 Electron volt eV J 38 Celsius Temperature t K 39 Astronomical unit AU m 40 Parsec pc m 41 Molar mass of carbon 12 kg 42 Planck constant over 2 pi h Js 43 Hartree energy En J 44 Conductance quantum Go 45 Inverse fine structure constant at 46 Proton electron mass ratio 47 Molar mass constant My kg mol 48
90. hausted before they reach the service life stated in the specifications Notes on erasure of memory contents When the battery is replaced the memory contents are erased Erasure can also occur if the calculator is defective or when it is repaired Make a note of all important memory contents in case accidental erasure occurs When to Replace the Batteries If the display has poor contrast or nothing appears on the display even when is pressed in dim lighting it is time to n eplace the batteries E 35 Cautions Fluid from a leaking battery accidentally entering an eye could result in serious injury Should this occur wash with clean water and immediately consult a doctor Should fluid from a leaking battery come in contact with your skin or clothes immediately wash with clean water If the product is not to be used for some time to avoid damage to the unit from leaking batteries remove them and store in a safe place Do not leave exhausted batteries inside the product Do not fit partially used batteries and be sure not to mix batteries of different types Keep batteries out of the reach of children Exhausted batteries left in the calculator may leak and dam age the calculator Explosion risk may be caused by incorrect handling Do not throw batteries into a fire as they may explode Replacement Procedure RON Turn power off by pressing OFF Remove the two screws Fig 1
91. l 5 2n 1 10 GRAD lxl lt 101 tan x x 100 2n 1 sinx cos x 1 1 lt 1 tanx 3yr 10100 In x log x 10 89 lt lt 10109 e gt 0 10 lt x log y lt 100 e y 0 lt lt 10 e lt 0 1 0 lt 1 1 lt 1 21 1 0 10 9 lt x log y lt 100 y 20 10m lt log y lt 100 x 0 yz0 0 lt lt 1019 Xy e y 0 x 2n 1 1 0 10 lt 1 log 1y lt 100 10 lt lt 230 2585092 105 101 lt lt 100 sinh x cosh x I x lt 230 2585092 sinh x Ix 109 cosh x 1 lt lt 1050 E 33 Function Dynamic range tanh x lxl lt 1 x lt 1099 x lt 2 15443469 x 1033 vx 0 x lt 10100 a Ix lt 101 x 0 n 0 lt lt 69 0 lt lt lt 9999999999 nPr n Tey lt 107 0 lt r lt n lt 9999999999 nCr Kt _ lt 69 lt 1010 DEG D M S 0 0 0 00001 lt x lt 10000 x yor0 Na y lt 10109 0 lt 7 lt 10190 DEG 101 lt 10 m 10 0 RAD lt GRAD 61 lt x 1019 DEG RAD GRAD DEG x lt 101 DRG gt RAD gt GRAD x lt 5 1098 A Bi C Di 1 1 1070 IB DI 10 9 A Bi C Di 1 lt 101 B DI 1079 A Bi x C Di AC BD lt 10 AD BC lt 10 A Bi
92. lator around in your back pocket as it may break when you sit down The display is made of glass and is particularly fragile e Keep the calculator away from extreme heat such as on a car dashboard or near a heater and avoid exposing it to exces sively humid or dusty environments Since this product is not waterproof do not use it or store it where fluids for example water can splash onto it Rain drops water spray juice coffee steam perspiration etc will also cause malfunction Clean with a soft dry cloth Do not use solvents or a wet cloth Do not drop it or apply excessive force Never dispose of batteries in a fire Keep batteries out of the reach of children This product including accessories may change due to up grading without prior notice NOTICE SHARP strongly recommends that separate permanent written records be kept of all important data Data may be lost or altered in virtually any electronic memory product under certain circumstances Therefore SHARP assumes no responsibility for data lost or otherwise rendered unusable whether as a result of improper use repairs defects battery replacement use after the specified battery life has expired or any other cause SHARP will not be liable nor responsible for any incidental or consequential economic or property damage caused by misuse and or malfunctions of this product and its peripherals unless such liability is acknowledged by law
93. oefficients ai etc can be entered using ordinary arithmetic operations To clear the entered coefficients press 2ndF CA Pressing when the determinant D is in the display recalls the coefficients Each time is pressed a coeffi cient is displayed in the order of input allowing the entered coefficients to be verified by pressing 2ndF ENT coeffi cients are displayed in reverse order To correct a particular coefficient being displayed enter the correct value and then press ENT woo 2 0 2 ENT ENT 4 ENT 5x 6y 7 5 ENT 6 ENT 7 x ENT x 7 ENT 2 det D ENT det D 3 Mopg _s 1 2 9 1 ENT 1 ENT 1 4 ENT 9 ENT 6 ENT 6 ENT 1 4 ENT 17 ENT 14x 7y 2z 42 14 ENT 7 ENT 2 ENT 42 x ENT x 3 238095238 CENT D 1 638095238 1 2 ENT z 7 4 det D ENT det D 105 E 29 QUADRATIC AND CUBIC EQUATION SOLVERS Quadratic ax bx 0 or cubic ax bx cx d 0 equation may be solved using is function Quadratic equation solver 2 Cubic equation solver Uo Press after entering each Cet The result will be displayed by pressing after entering all coefficients When there are more than 2 results the next solution will be displayed When the result is an imaginary number symbol will appear The display can be switched between imaginary
94. rd The calculation result is automatically stored in memories X and Y e Value ofr or x X memory Value of 0 or y Y memory 6 4 2ndF re 7 211102551 y 4 esr 33 69006753 2ndF 7 211102551 14 36 14 b Cd 11 32623792 36 y Eb 8 228993532 bl 11 32623792 E47 Calculations Using Physical Constants A constant is recalled by pressing followed by the number of the physical constant designated by a 2 digit number The recalled constant appears in the display mode selected with the designated number of decimal places Physical constants can be recalled in the normal mode when not set to binary pental octal or hexadecimal statistics mode and equation mode Note Physical constants and metric conversions are based on the 2002 CODATA recommended values or on the 1995 Edition of the Guide for the Use of the International System of Units SI released by NIST National Institute of Standards and Technology or on ISO specifications No Constant Symbol Unit 01 Speed of light in vacuum C Co m s 02 Newtonian constant of gravitation G m s 03 Standard acceleration of gravity Qn ms 04 Electron mass Me kg 05 Proton mass kg 06 Neutron mass kg 07 Muon mass mu kg 08 Atomic mass unit kilogram 1 kg relationship 09 Elementary charge e C 10 Planck constant
95. u have to find a value consecutively using the same formula such as plotting a curve line for 222 1 or finding the variable for 2x 2y 14 once you enter the equation all you have to do is to specify the value for the variable in the formula Usable variables A F M X and Y Unusable functions Random function Simulation calculations can only be executed in the normal mode e Calculation ending instructions other than cannot be used Performing Calculations 1 Press o nput a formula with at least one variable 3 Press 2ndF ALGB Variable input screen will appear Input the value of the flash ing variable then press to confirm The calculation result will be displayed after entering the value for all used variables Only numerical values are allowed as variables Input of formulas is not permitted Upon completing the calculation press to per form calculations using the same formula Variables and numerical values stored in the memories will be displayed in the variable input screen To change a numerical value input the new value and press ENT Performing simulation calculation will cause memory loca tions to be overwritten with new values MODE 0 3 342 x 3 aeg x C 2 Grae A88 1 1 2 x 0 5 2ndF ALGB 0 5 ENT 1 125 VA2 B2 2ndF Y_ aa JC x JC ALPHA B x
96. ual quick reference card and hard case SHARP SHARP CORPORATION 37 SHARP EL 509F ADVANCED D A L ree 1 A fF Saz SN et 2 2 STAT VAR INS are e hypNOT sin AND cos OR tan d dx XNOR hyp sin ses tan Gee CONV B 3 D 10 E E iog C In 5 DEG 2 Y M M Es v ws mer sto m Hu RANDOM T OY x 7 8 9 OG sx nPr 0 E39 http www sharp co jp support m 8 9 00 18 00 618 0120 303 909 9 00 17 00 EPERERA msg 9 00 11 45 2 05 13 10 17 00 0570 05 0892 6 64 545 8522 22 22 639 1186 492 PRINTED IN CHINA 09HGKCTINSJ1534EHZZ
97. with fre quency is stored as a set of three data items Data Correction Correction prior to pressing immediately after a data en try Delete incorrect data with then enter the correct data Correction after pressing DATA Use to display the data previously entered Press v to display data items in ascending oldest first order To reverse the display order to descending latest first press the A key Each item is displayed with xn Yn or Nn n is the sequential number of the data set Display the data item to modify input the correct value then press DATA Using you can correct the values of the data set all at once Todelete a data set display an item of the data set to delete then press 2 cp The data set will be deleted Toadda new data set press and input the values then press DATA r DATA4 30 wong 1 o 0 40 30 1 40 40 2 2 50 50 3 DATA4 30 Cv2Cv 45 45 3 X2 45 45 Cv N2 3 45 60 Cv 60 X3 60 27 Statistical Calculation Formulas Type Regression formula Linear y a bx Quadratic Exponential Logarithmic y a belnx Power 1 Inverse In the statistical calculation formulas an error will occur when The absolute value of the intermediate result or calculation result is equal
Download Pdf Manuals
Related Search
Related Contents
Toshiba 170F All in One Printer User Manual Purgador de Bóia FT 20 1” Hoist Fitness CD2700 User's Manual Keys Fitness CM708S User's Manual 入札説明書に関する質問への回答書 MagicCylinder Dell Force10 E300 Upgrade Guide COBY electronic DP245 User's Manual 25 ans - Théâtre La Boîte à Jouer CDDC - Mode d`emploi Copyright © All rights reserved.
Failed to retrieve file