Home

TOUGHREACT Examples - Thunderhead Engineering

image

Contents

1. x as Figure 3 6 CO2 Injection Click OK to close the Edit Cell Data dialog Solution Controls We will now define the solution options Options relating the time step and other solution controls can be found in the Solution Controls dialog To open the Solution Controls dialog on the Analysis menu click Solution Controls Times 1 Inthe Solution Controls dialog click the Times tab 2 Inthe End Time box type 100 years 3 Inthe Time Step box type 1 0 4 Inthe Max Num Time Steps list click Infinite 28 5 Inthe Max Time Step list select User Defined 6 Inthe Max Time Step box type 30 days Solver 1 Click the Solver tab 2 For the Conjugate Gradient Solvers select Stabilized Bi Conjugate Gradient 3 Inthe Max CG Iterations Frac Of Eqns box type 0 8 4 Inthe CG Convergence Criterion box type 1e 7 Click OK to exit the Solution Parameters dialog Output Controls By default the simulation will print output every 100 time steps We can change the resolution of the output in the Output Controls dialog 1 Onthe Analysis menu click Output Controls 2 Inthe Print and Plot Every Steps box type 9999 we will specify specific output times To specify specific times for output On the Output Controls dialog click the Edit button to open the Additional Print Times dialog In the Times table type 3 15576E7 3 15576E8 1 57788E9 3 15576E9 1 57788E10 3 15576E10 6 31152E10 and 1 577
2. This is the standard TOUGH2 input file e solute inp The chemical geography of the analysis e chemical inp The chemical parameters e thermodb txt The thermodynamic database PetraSim creates each of these files into your simulation directory However the filenames cannot be changed The naming scheme for the simulation output files follows a similar pattern To avoid overwriting previous simulation input and output data you must run each analysis in a separate directory Thermodynamic Database A thermodynamic database listing the composition of many different species and minerals has been included with PetraSim PetraSim will automatically load this database A valid database must be loaded prior to the inclusion of species or the definition of reactive zones This is because the species used to build up the zones are loaded from the thermodynamic database If you choose to use a custom database you must ensure that it is loaded before configuring any species or zones To load a custom thermodynamic database 1 On the Tough React menu click Thermodynamic Database 2 Select your custom thermodynamic database 3 Click OK 2 Aqueous Transport with Adsorption and Decay EOS9 Description This problem is the first example in the TOUGHREACT manual It isa 1 D problem 12 min length with a unit area divided into 60 blocks of 0 2 m thickness as shown in Figure 2 1 d N Boundary water Initial gt i
3. Linear Kd Zone None v Cation Exchange Zone None v Figure 3 8 Zones Associated with Mesh Click OK to exit the Edit Region Data dialog Save and Run The input is complete and you can run the simulation To retain the geochemical data as a reusable starting point save this model as a different file in a separate directory For example 1 On the File menu click Save As 2 Inthe File Name box type C t2react_co2_disposal part1 co2_disposal_p1 sim 3 Click Save To run the simulation on the Analysis menu click Run T2REACT View Results The best way to view results for this problem is to use the Line Plot feature in PetraSim Line plots allow us to view the data in 2D as a function of distance from a point In this case we will view the data as it radiates from the center of the model as a function of R Line plots are available in the 3D Results view To create a line plot 1 Onthe Results menu click 3D Results 2 Inthe 3D Results view on the File menu click Line Plot 30 3 Inthe Line Plot dialog enter the following two points Point1 0 0 0 5 50 Point2 8000 0 5 50 then click OK X Coordinate Y Coordinate Z Coordinate Point 1 on 0 5 Point 2 8000 0 5 DEI Cas Figure 3 9 Preparing a Line Plot In the Line Plot dialog to show CO2 saturation Sg 1 Inthe Variable list select SG 2 Inthe Time list select 3 156E9 This result is shown in Figure 3 10 D Line Plo
4. box type 40 For Aqueous Concentration Output select Write Total Aqueous Component Concentrations For Aqueous Concentration Units select mol L Liquid For Mineral Abundance Units select Change in Volume Fraction IN CE GR Click OK to exit the Output Options dialog TOUGHREACT Chemical Components TOUGHREACT chemical components can be specified in the Chemical Components dialog To open the Chemical Components dialog on the Tough React menu select Chemical Components To define the primary species 1 Inthe list on the left of the Chemical Components dialog select Primary Species 2 Inthe Thermodynamic Database list in the middle of the dialog select h h20 na skdd1 skdd2 and skdd3 3 Click the gt button to move the selected species into the Current Simulation list on the right as shown in Figure 2 4 Chemical Components Primary Species Aq Complexes x Minerals Thermodynamic Database Current Simulation Gaseous Species rb h A Surface Complexes reo4 h2o rn aq na ruo4 2 skddi sb oh 3 ag skdd2 sc 3 skdd3 seo3 2 gt sio2 aq sn 2 so4 2 sr 2 tb 3 tco4 th 4 Hifahlafan ba Figure 2 4 Primary Species 4 Click Apply to add the selected species to the analysis The parameters specific to each type can be viewed and changed by clicking on that type in the subtree under Primary Species in the list on the left To edit parameters for
5. iere d sides tax vindeseasvanedhesbnddscssacedactsndeceassacececehuadecsvicesausnuees 8 TOUGHREACT Output Options c 8 TOUGHREACT Chemical Components eene enne nnns ener rh tn nass s sesenta assai ainada Naini 8 TOUGHREACT Zone Data 10 Associate Zones with Mesh ann nern acaducbeaceavassccdduatacdaictceaavitees 11 SAVE and RUM ERPBECREEEFSEFEFRRSPFELEFFIBGETEREELEFTEFIETFETETSECEEETFERCETEFSEOREETFEBCFLL EEEE ASAE E AE AAE E 12 HAETT 12 View Cell History Plots a ETENE E EEN EESE GE EEN EEEE 13 3 CO2 Disposal in Deep Saline Aquifers ECO2N srrasvvnvvvnvvvnnvvnnvnnnvnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnns 15 Red EE 15 Create the TOUGHREACT Model is 4 citt cereis co eet ctt eis eet etia eee ae aa oca eret ara eed ka eee T Eee aa Ree 15 leisen TEE 15 Material Properties nee tem y er mete Die ce e ved Dre Eve eeu terat ve urb Eeer 16 Material Dat ats cct cm 16 Relative EE e 16 Capillary OT EE 16 Miscellaneous EE 16 Initial Gonditionsa en Heat ernennen Narren 17 TOUGHREACT Solution Parametere 17 TOUGHREACT ele e elei 18 TOUGHREACT Chemical Components esses nnne ieira e neat ti sn aa nass sse n setis aei oina 18 Primary Species EE 18 Te Ee EE elle E CEET EE 19 d le GE 19 GaSCOUS SPECIES anken ke eee s te ske 22 TOUGHREACT Zone DITA eerte mete anne Banner 23 Saving the Geochemical Data File as a Starting Point for a New Analyse 25 G
6. kcl aq kso4 mgcl mghco3 mgso4 aq naalo2 aq nacl aq naco3 nahco3 aq nahsio3 aq naoh aq naso4 oh and so2 aq 4 Click the gt button to move the selected species into the Current Simulation list on the right 5 Click Apply to add the selected species to the analysis Minerals A similar process is used to define the minerals In the List on the left of the Chemical Components dialog select Minerals In the Thermodynamic Database in the middle of the dialog select albite low ankerite 2 calcite chlorite dawsonite dolomite 2 hematite illite k feldspar kaolinite magnesite oligoclase pyrite 2 quartz siderite 2 smectite ca and smectite na Click the gt button to move the selected species into the Current Simulation list on the right Click Apply to add the selected minerals to the analysis 19 The parameters specific to each mineral can be viewed and changed by clicking on that type in the subtree under Minerals in the list on the left Each mineral has unique dissolution precipitation and additional mechanisms properties The values for each of these properties for each mineral are shown in Table 3 1 and Table 3 2 Pyrite is a bit different than the other minerals and its properties are shown in Table 3 3 and Table 3 4 This section will demonstrate how to specify the properties for albite low then you should be able to enter the remaining mineral properties by following the same pattern and re
7. 0 1000 0 2000 0 3000 0 4000 0 5000 0 6000 0 70000 80000 9000 0 es 1 Distance Figure 3 12 Line Plot of Total CO2 Sequestered in Minerals SMco2 You can also look at the mineral abundance as a function of x R using the Line Plot dialog 33 References 1 Xu Tianfu et al TOUGHREACT User s Guide A Simulation Program for Non isothermal Multiphase Reactive Geochemical Transport in Variably Saturated Geologic Media Berkeley CA USA Earth Sciences Division Lawrence Berkeley National Laboratory September 2004 LBNL 55460 2 Pruess Karsten Oldenburg Curt and Moridis George TOUGH2 User s Guide Version 2 0 Berkeley CA USA Earth Sciences Division Lawrence Berkeley National Laboratory November 1999 LBNL 43134 3 Pruess Karsten and Garcia J Solutions of Test Problems for Disposal of CO2 in Saline Aquifers Berkeley CA USA Earth Sciences Division Lawrence Berkeley National Laboratory December 2002 LBNL 51812 4 Pruess Karsten et al Intercomparison of Numerical Simulation Codes for Geologic Disposal of CO2 Berkeley CA USA Earth Sciences Division Lawrence Berkeley National Laboratory December 2002 LBNL 51813 5 Pruess Karsten A TOUGH2 Fluid Property Module for Mixtures of Water NaCl and CO2 Berkeley CA USA Earth Sciences Division Lawrence Berkeley National Laboratory August 2005 LBNL 57952 34
8. 24 3 Inthe Create a New Zone dialog type Perm Pore Zone and click OK 4 Click Apply 5 Inthe list on the left click beside Permeability Porosity to expand the subtree 6 Inthe subtree under Permeability Porosity click Perm Pore Zone to display the zone parameters to the right of the list 7 For Permeability Law select Cubic Law 8 Click Apply 9 Click OK to exit the Geochemical Zones dialog Saving the Geochemical Data File as a Starting Point for a New Analysis All of the problem data that is not specific to a particular geometry and loading condition has now been defined At this point save the data by clicking Save As on the File menu and typing geochem_basic sim as the file name We can now open geochemical data and click Save As on the File menu giving the new name as co2 disposal pi sim Anytime you want to create a model that uses the same or similar geochemical data you can open the geochem_basic sim file and save it as a different file as a starting point for a different analysis In this manner you can avoid repeating all the data input In continuing this example model specific data will now be entered and simulated Create the Model Boundary To create the boundary for this model use the Edit Boundary dialog To create the model boundary 1 On the Model menu click Edit Boundary 2 Click the Quick Set Min Max button C from the toolbar to open the Set Boundary dialog 3 Enter the values from T
9. 4 Inthe layers list select Default 5 ForDz select Regular 6 Inthe Cells box type 1 Click OK to apply the changes and close the Edit Layers dialog Create the Mesh Next we will create the actual mesh using the Create Mesh dialog To open the Create Mesh dialog on the Model menu click Create Mesh 1 Forthe Mesh Type select Radial 2 Forthe Divisions select Regular 26 3 Inthe Radial Cells box type 100 4 Inthe Factor box type 1 1096251 Click OK to create the mesh This 100 mesh grid used here is different than the 130 cell meshmaker mesh used in the example problem write up from the TOUGHREACT user s manual The style of the mesh used in TOUGHREACT user s manual would require a logarithmic capability in PetraSim s meshmaker mesh creator that is currently not supported The 100 cell logarithmic mesh used in this example problem appears to be sufficient based on a sensitivity analysis Figure 3 5 of the Sg parameter after 100 years of simulation with different mesh sizes CO2 Gas Saturation Grid Sensitivity Analysis value of Sg after 100 years 25 cells 50 cells 100 cells 200 cells 130 cells Xu o 1000 2000 3000 4000 5000 6000 7000 8000 9000 R distance from injection point Figure 3 5 CO2 Injection To use a 200 cell mesh change the value of the Radial Cells parameter to 200 and the value of the Factor parameter to 1 04950055 The running time of
10. Printed copies of the user manuals may be obtained from Karsten Pruess at K Pruess Qlbl gov gt The original development of PetraSim was funded by a Small Business Innovative Research grant from the U S Department of Energy Additional funding was provided by a private consortium for the TOUGHREACT version and by the U S Department of Energy NETL for the TOUGH Fx HYDRATE version We most sincerely thank our users for their feedback and support 1 Overview Using TOUGHREACT TOUGHREACT is an extension of the original TOUGH2 simulator that is available as a simulator mode in PetraSim The TOUGHREACT simulator supports a subset of the TOUGH2 EOS modules The supported EOS modules are EOS1 EOS2 EOS3 EOS4 EOS9 and ECO2N You can perform a TOUGHREACT simulation by selecting the TOUGHREACT simulator mode and one of the available EOS modules when creating a new model In PetraSim options relating to TOUGHREACT are presented under the Tough React menu item in the main window These options allow you to configure the reactive transport solver simulation output chemical zones and other TOUGHREACT specific parameters It is also possible to disable reactive transport during a TOUGHREACT simulation This will effectively revert the simulator to TOUGH2 mode This option is available in the Global Properties dialog on the Analysis tab Input Files A TOUGHREACT simulation requires four input files These files are listed below e flow inp
11. in the middle of the dialog select alo2 ca 2 cl fe 2 h h2o hco3 k mg 2 nat o2 aq sio2 aq and so4 2 3 Click the gt button to move the selected species into the Current Simulation list on the right Click Apply to add the selected species to the analysis 18 Chemical Components tg Se a Thermodynamic Database Current Simulation cl ag alo2 fe 2 am 3 ca 2 h ar aq cl h2o au fe 2 hco3 b oh 3 aq h k ba 2 h2o mg 2 be 2 hco3 nat br k o2 aq cd 2 ma 2 sio2 aq ce 3 Dat so4 2 co 2 o2 aq Aq Complexes cro4 2 sio2 aq Minerals cs so4 2 Gaseous Species cu 2 Surface Complexes dy 3 e iw Figure 3 2 Primary Species The parameters specific to each type can be viewed and changed by clicking on that type in the subtree under Primary Species in the list on the left For this simulation there is no need to edit any additional parameters Aqueous Complexes A similar process is used to define the aqueous complexes In the list on the left of the Chemical Components dialog select Aq Complexes For Specify Secondary Species select Select Species Individually In the Thermodynamic Database list in the middle of the dialog select acetic acid aq al oh 2 al oh 3 aq al 3 aloh 2 cacl cacl2 aq caco3 aq cahco3 caoh caso4 aq ch4 aq co2 aq co3 2 fe 3 tech fecl4 2 feco3 aq fehco3 h2 aq h2s aq h3sio4 halo2 aq hs hso3
12. the initial state of the simulation Correct specification of initial conditions is essential for proper convergence and obtaining a correct result In general the initial conditions need to be physically meaningful Often this requires an initial state analysis in which a model is run to obtain initial equilibrium conditions before the analysis of interest geothermal production VOC spill etc is run To edit global initial conditions on the Properties menu click Initial Conditions To set the initial conditions 1 Inthe list select Pressure 2 Inthe Pressure box type 1 001E5 Click OK to exit the Default Initial Conditions dialog Define Boundary Conditions Boundary conditions can be defined for individual cells We will define conditions for injection and production cells Water Source We will inject into the cell on the left and produce from the cell on the right Click on the leftmost cell in the mesh cell 1 To edit the properties of this cell on the Edit menu click Properties Click the Properties tab Then in the Cell Name box type nput Click the Sources Sinks tab To define the source 1 Under Injection select Water 2 Inthe Rate box type 1 16E 4 3 Because EOS9 is an isothermal analysis the enthalpy value need not be set Next click the Print Options tab Select Print Cell Time Dependent Flow and Generation BC Data This will output data for this cell at every time step which can then be used
13. this simulation is linear in the number of cells It takes approximately 10 minutes to run the first 100 years of the simulation with 100 cells This time would be doubled for 200 years Define Boundary Conditions To edit cells you can use the 3D View In this case we will use the 3D View to define boundary conditions in the model In this model CO2 is injected into the center at 90 kg s Since this is an RZ grid the center cell is the min x cell far left Since this is an isothermal simulation it will not be necessary to specify an enthalpy for the injected CO2 we will leave this value at 0 0 To select and edit the injection cell 1 Inthe Find box type 1 then press Enter Cell 1 will be selected and centered in the 3D View 2 On the Edit menu click Properties This will open the Edit Cell Data dialog To specify the properties for the injection cell 27 1 Click the Sources Sinks tab 2 Under Injection click to select CO2 3 Inthe Rate box type 90 0 P Edit Cell Data 1 Heat Heat In Constant Rate J s 0 0 Production Mass Out Constant Rate kg s 0 0 7 Well on Deliv Productivity Index PI m 3 0 0 Pressure Pa 0 0 well from File a Productivity Index PI m 3 0 0 Injection Water Constant Rate ka s 0 0 Enthalpy J kg 0 0 NaCl Constant Rate kg s 0 0 Enthalpy J kg 0 0 v co2 Constant Rate kg s 90 0 Enthalpy J kg 0 0
14. to make detailed time history plots Click OK to close the Edit Cell Data dialog Similar steps are followed to define production in the model Production We will produce from the cell on the right Click on the rightmost cell in the mesh cell 460 To edit the properties of this cell on the Edit menu click Properties Click the Properties tab Then in the Cell Name box type Output Select the Sources Sinks tab To define the production 1 Under Production select Mass Out 2 Inthe Rate box type 1 16E 4 Next click the Print Options tab Select Print Cell Time Dependent Flow and Generation BC Data Click OK to close the Edit Cell Data dialog Print Center Cell Data We will also choose a cell in the center of the model for which time history data will be printed Right click on a cell near the center for example cell 430 to edit the cell properties Click the Properties tab Then in the Cell Name box type Center Unlike the Input and Output cells do not set any boundary condition data for the Center cell Click the Print Options tab Select Print Cell Time Dependent Flow and Generation BC Data Click OK to close the Edit Cell Data dialog Solution Controls We will now define the solution options Options relating the time step and other solution controls can be found in the Solution Controls dialog To open the Solution Controls dialog on the Analysis menu click Solution Controls Times 1 Inthe Solut
15. viewing perspective 12 Serge u File Results View 398 a ee Time 5 5536E06 Scalar nat v Vectors Rogo als perm Show Isosurfaces Scaler le ls Scalat Properties El show vectors Vector Scale 0 1 10 0 Vector Size Range Const VectorPropertes 7 Show Sice Planes E Color Sices by Cell Figure 2 5 3D Results On the File menu click Close to close the 3D Results dialog View Cell History Plots You can view time history plots with the Cell Time History dialog On the Results menu click Cell History Plots The Cell Time History dialog will be displayed In this window you can display time history data using a plotting parameter and a list of cells For example to view the isosurfaces for the Center cell as shown in Figure 2 6 1 Inthe Variable list select nat 2 Inthe Cell Name Id list select Center 13 BI Cell Time History CAt2react exampleiM2react exampleL sim _ re Eile View Primary Data na Variable pr 2 1 0E 04 Cel Name Id Input 1 9 0E 05 Output 60 8 0E 05 7 0E 05 6 0E 05 5 0E 05 4 0E 05 30E 05 2 0E 05 1 0E 05 0 0 I 00 1 0606 20608 30606 4 0606 50608 60606 7 0606 8 0E06 9 0E06 Mark Style Time Figure 2 6 Cell History In the File menu click Close to close the Cell History window 14 3 CO2 Disposal in Deep Saline Aqu
16. which we want to view data in the Additional Print Times dialog To specify additional times for output 1 Onthe Output Controls dialog click the Edit button to open the Additional Print Times dialog 2 Inthe Times table type 4 32E6 and 8 64E6 3 Click OK to exit the Additional Print Times dialog Click OK to exit the Output Controls dialog TOUGHREACT Solution Parameters We will now set the TOUGHREACT parameters In this example we are doing this last since the entire model will lie in the same zone However if we wanted to define different zones in the model we would specify the TOUGHREACT parameters first TOUGHREACT solution parameters can be entered on the Solution Parameters dialog To open the Solution Parameters dialog on the Tough React menu click Solution Parameters Select Advanced from the list on the left to display the Advanced Options pane Under the Advanced Options select Print Porosity Permeability Capillary Pressure Changes Next select Times and Convergence from the list on the left to open the Time Stepping and Convergence Options pane In the Max Iterations to Solve Geochemical System box type 300 In the Relative Sorption Concentration Tolerance box type 1 0E 6 Click OK to exit the Solver Parameters dialog TOUGHREACT Output Options TOUGHREACT output options can be changed on the Output Options dialog On the Tough React menu click Output Options In the Grid Block Output Frequency s
17. 0 0 001 9 8 cm g mineral ankerite 2 0 0 001 9 8 cm g mineral calcite 0 01929 chlorite 0 04556 0 001 9 8 emie mineral dawsonite 0 0 001 9 8 cm g mineral dolomite 2 0 0 001 9 8 emie mineral hematite 0 00497 0 001 12 87 cm g mineral illite 0 00954 0 001 151 63 cm g mineral k feldspar 0 08179 0 001 9 8 cm g mineral kaolinite 0 02015 0 001 151 6 cm g mineral magnesite 0 0 001 9 8 cm g mineral oligoclase 0 19795 0 001 9 8 cm g mineral pyrite 2 0 0 001 12 87 cm g mineral quartz 0 57888 0 001 9 8 cm g mineral siderite 2 0 0 001 9 8 cm g mineral smectite ca 0 0 001 151 63 cm g mineral smectite na 0 03897 0 001 151 63 cm g mineral 8 Click Apply Geochemical Zones x oC eee 5 a en ni Mineral vol Fraction Grain Radius Surface Area Units Fineral Zone hematite 4 97E 03 1E 03 12 8700 cm 2 a mineral v remedy ot ete a tree iE ER Linear Kd kaolinite 2 015E 02 1E 03 151 6300 cm 2 a mineral s Cation Exchange magnesite 0 0 1E 03 9 80000 cm 2 q mineral w oligoclase BEE 1E 03 9 80000 cm 2 a mineral pyrite 2 0 0 1E 03 12 8700 quartz 57888 1E 03 9 80000 siderite 2 0 0 1E 03 9 80000 smectite ca 0 0 1E 03 151 6300 smectite na 3 897E 02 1E 03 151 6300 cm 2 qmineral La Apply OK Cancel Figure 3 3 Mineral Zone Data To create the permeability porosity zone 1 Select Permeability Porosity in the list on the left 2 Click Add
18. 7 Figure e e KN uge EE 28 Figure 3 7 Selecting a region in the Tree View 30 Figure 3 8 Zones Associated with Mech 30 Figure 3 9 Preparing a Line Plot are anne 31 Figure 3 10 Line Plot of CO2 Saturation SG 31 Figure 3 11 Preparing a Line Plot 33 Figure 3 12 Line Plot of Total CO2 Sequestered in Minerals SMco2 esses 33 vi List of Tables Table 2 1 Table 2 2 Table 2 3 Table 3 1 Table 3 2 Table 3 3 Table 3 4 Table 3 5 Table 3 6 Table 3 7 Model Boundary Dimensions eene nn enhn nsns nennen nass snis n neris n asses 2 Water Zone D t o 10 Water Zone Datei E 11 Dissolution and Precipitation Data for Mineralen 21 Additional Mechanism Data for Mineral 22 Dissolution and Precipitation Data for pvrtte i 22 Additional Mechanism Data for pyrite 2 sess enne nennen nennt nnne 22 Water le 23 Mineral Zeene 24 Model Boundary Dimenslons eene enne nenhnnnn nsns n ennt anas seres entras anas nnns 25 vii Disclaimer Thunderhead Engineering makes no warranty expressed or implied to users of PetraSim and accepts no responsibility for its use Users of PetraSim assume sole responsibility under Federal law for determining the appropriateness of its use in any particular application for any conclusions drawn from the results of its use and for any actions taken or not taken as a result of analyses performed using these tools Users are warned that PetraSim is intended for us
19. 88E11 3 Click OK to exit the Additional Print Times dialog Click OK to exit the Output Controls dialog Associate Zones with Mesh The last task is to associate zones with the mesh This can be done in two ways either by region or for individual cells Initially the model is one region but it can be subdivided into more regions by using internal boundaries This can be useful since it is also possible to assign material data and initial conditions by region In this case the model will remain a single region and we will specify zones for the entire domain To specify zone data 1 Inthe Tree View at the left under Layers under the Default layer click to select the Default region as shown in Figure 3 7 Under the Edit menu click Properties to open the Edit Region Data dialog Click the Chemical Zones tab Select Set Zone Data EE E From the Initial Water Zone Mineral Zone and Permeability Porosity Zone lists select the respective zones that have previously been created 29 j Model amp Layers Default i Internal Boundaries RR Materials Wells Namedj Print Cells ExtraCells Figure 3 7 Selecting a region in the Tree View Edit Region Data Properties Initial Conditions Chemical Zones v Set Zone Data Initial Water Zone Water Zone Mineral Zone Mineral Zone m Boundary Water Zone None v v v Gas Zone None Permeability Porosity Zone Perm Pore Zone ze
20. Heat box type 952 9 Click Apply to save the changes Up ene In addition to the physical rock parameters we also need to specify the relative permeability and capillary pressure functions for this material These options can be found in the Additional Material Data dialog To open this dialog click the Additional Material Data button Relative Permeability To specify the relative permeability function Click the Relative Perm tab In the Relative Permeability list select Linear Functions In the SImin box type 333 In the Slmax box type 1 0 In the Sgmin box type 0 1 DER w In the Sgmax box type 0 0 Capillary Pressure To specify the capillary pressure function Click the Capillary Press tab In the Capillary Pressure list select Linear Function In the CPmax box type 9 7902E3 In the A box type 0 333 In the B box type 1 0 Ui Ee e ps Click OK to exit the Additional Material Data dialog Click OK again to save your settings and exit the Material Data dialog Initial Conditions The initial state of each cell in the model must be defined The Default Initial Conditions dialog is used to define initial conditions that will be applied to the entire model You can also specify initial conditions by cell by region by layer or by importing the results of a previous analysis For any analysis the specific initial conditions will depend on several factors including EOS selection simulator mode and
21. To add additional mechanisms for albite low Under Rate Constant Dependence on pH click to select Specify Additional Mechanisms Click Edit This will open the Edit Additional Mechanisms dialog Click New This will create Mechanism 1 In the Weighting Factor box type 6 9183e 11 from Table 3 2 In the Activation Energy box type 65 0 from Table 3 2 In the table in the Species list select h from Table 3 2 In the table in the Exponent box type 0 457 from Table 3 2 AN INTITLE 20 10 11 12 13 14 Click Apply to save the changes to Mechanism 1 Click New This will create Mechanism 2 In the Weighting Factor box type 2 5119e 16 from Table 3 2 In the Activation Energy box type 71 0 from Table 3 2 In the table in the Species list select h from Table 3 2 In the table in the Exponent box type 0 572 from Table 3 2 Click OK to save changes and exit the Edit Dissolution Rate Parameters dialog All other selected minerals should be edited in this fashion using the values shown in Table 3 1 and Table 3 2 Data for pyrite 2 can be found in Table 3 3 and Table 3 4 Empty table cells indicate that the existing data is already correct and that new data need not be entered i e if there is no entry for a particular option do not enable that option Table 3 1 Dissolution and Precipitation Data for Minerals Mineral Activation Energ
22. able 3 7 Click OK to close the Set Boundary dialog and preview the new model boundary Click OK to close the Edit Boundary dialog and commit the changes Table 3 7 Model Boundary Dimensions Axis Min m Max m X 0 0 100000 0 Y 0 0 1 0 Edit the Default Layer We will now set the Z bounds of the default layer Under the Model menu select Edit Layers to open the Edit Layers dialog 1 Select the default layer from the list on the left 2 Forthe Top enter O 3 Forthe Base enter 100 Click OK to commit the changes and close the Edit Layers dialog 25 To make this model easier to visualize we will change the view scale On the View menu click Scale Axes to open the Scale Axes dialog 1 Forthe X Factor enter 005 2 Forthe Y Factor enter 100 0 Click OK to set the view scale The model should now appear as shown in Figure 3 4 EX ene Untited I le Edit Model Properties Tough React Analysis Results View Help ReW XNSSARB B4 ORO NE Wiel e amp m gt x amp amp ME Ea ren cote By ayer TOUGHREACT ECO Figure 3 4 Model after applying view scale Specify the Solution Mesh Specifying the mesh takes two steps First we must enter the Z divisions per layer Then we create the mesh Specify Z Divisions We must first specify the Z divisions for the default layer To open the Edit Layers dialog on the Model menu click Edit Layers
23. beginning by defining analysis options related to the equation of state ECO2N To edit global properties on the Properties menu click Global Properties Click the Analysis tab In the Name box type CO2 Injection Click the EOS tab Select Isothermal In the Brine Density in CO2 box select Independent GA qw eg Click OK to exit the Global Properties dialog 15 Material Properties We next define the material properties Since this problem uses only one material we will simply modify the default material To edit material properties on the Properties menu click Edit Materials Material Data 1 St en Z In the Name box type SAND In the Porosity box type 0 3 In the three x y and z permeability boxes type 1 0E 13 In the Wet Heat Conductivity box type 2 51 In the Specific Heat box type 920 Relative Permeability 1 zt Sp Ur qe us Click Additional Material Data to open the Additional Material Data dialog Click the Relative Perm tab In the Relative Permeability list select van Genuchten Mualem Model In the RP 1 box type 0 457 In the Slr box type 0 3 In the Sls box type 1 0 In the Sgr box type 0 05 Capillary Pressure 1 Click the Capillary Press tab 2 Inthe Capillary Pressure list select van Genuchten Function 3 Inthe CP1 1 box type 0 457 4 Inthe Slr box type 0 0 5 Inthe 1 P0 box type 5 1E 5 6 Inthe Pmax box type 1 0E7 7 Inthe Sls box typ
24. ck Validation 17 1 Inthe Max Stochiometric lonic Strength box type 6 0 Click Times and Convergence 1 Inthe Relative Transport Concentration Tolerance type 1 0E 6 2 Inthe Relative Sorption Concentration Tolerance type 1 0E 6 Click Diffusion Coefficients 1 Inthe Aqueous Species Diffusion Coefficient box type 1 0E 9 2 Inthe Gaseous Species Diffusion Coefficient box select User Defined and type 1 1E 5 Click OK to exit the Solver Parameters dialog TOUGHREACT Output Parameters TOUGHREACT output parameters can be set in the Output Options dialog To open the Output Options dialog on the Tough React menu click Output Options 1 Under Aqueous Concentration Output select Write Total Aqueous Component Concentrations 2 Under Mineral Abundance Units select Change in Volume Fraction Click OK to exit the Output Options dialog TOUGHREACT Chemical Components TOUGHREACT chemical components can be specified in the Chemical Components dialog To open the Chemical Components dialog on the Tough React menu select Chemical Components The thermodynamic database contains the master list of chemical components To use a species of any type we first add the species to the simulation then configure the simulation specific properties for that species Primary Species To define the primary species In the list on the left of the Chemical Components dialog select Primary Species In the Thermodynamic Database list
25. click Browse and select the SAVE file from the previous run For Geochem Data savechem click Browse and select the savechem file from the previous Penn run 5 Click OK to save changes and close the Restart Options dialog Set a New End Time To specify the new 1 000 year end time for the simulation 1 Onthe Analysis menu click Solution Controls 2 Inthe Solution Controls dialog in the End Time box type 1000 yrs 3 Click OK to save changes and close the Solution Controls dialog Start the Continuation Run On the Analysis menu click Run T2React View Results To look at the total amount of sequestered CO2 after 1 000 years we can create another line plot To create a line plot On the Results menu click 3D Results Inthe 3D Results view on the File menu click Line Plot 3 Inthe Line Plot dialog enter the following two points Point1 0 0 5 50 Point2 8000 0 5 50 then click OK 32 X Coordinate Y Coordinate Point 1 0 0 0 5 Point 2 8000 0 5 Figure 3 11 Preparing a Line Plot In the Line Plot dialog to show total CO2 sequestered in minerals SMco2 1 Inthe Variable list select SMco2 2 Inthe Time list select 3 156E10 This result is shown in Figure 3 12 E Line Plot Am ar PEPE lass Eile View Primary Dat SE SMco2 Vari d rer 25 0 Time 1 578E10 20 0 15 0 10 0 5 0 I 0 0 ere 0
26. e 0 999 Miscellaneous 1 Click the Misc tab 2 Inthe Pore Compressibility box type 4 5E 10 Click OK to exit the Additional Material Data dialog 16 Materials Matrix Fracture Density DROK kg m 3 2600 0 Porosity POR 0 3 X Permeability PER 1 m 2 1 0E 13 Y Permeability PER 2 m 2 1 0E 13 Z Permeability PER 3 m 2 1 0E 13 Wet Heat Conductivity CWET W m C 2 51 Specific Heat SPHT J kg C 920 0 Additional Material Data i OK Cancel Figure 3 1 SAND Material Data Click OK again to exit the Material Data dialog Initial Conditions To open the Default Initial Conditions dialog on the Properties menu click Initial Conditions In the dropdown box select Two Fluid Phases P Xsm Sg T In the Pressure box type 2 0E7 In the Temperature box type 75 0 In the Gas Saturation box type 0 0 In the Salt Mass Fraction box type 0 06 Wi P wn bP Click OK to exit the Default Initial Conditions dialog TOUGHREACT Solution Parameters TOUGHREACT solution parameters can be set in the Solution Parameters dialog To open the Solution Parameters dialog on the Tough React menu click Solution Parameters Click Standard 1 Click to select Enable Gaseous Species Transport Click Advanced 1 Click to de select Ignore Mineral Dissolution Precipitation Effects on Flow 2 Under Effect of CO2 and H20 Reactions on Flow click to select CO2 and H20 Cli
27. e Water Initial to expand the subtree In the subtree under Water Initial click Water Zone to display the zone parameters in to the right of the list Enter the data that is shown in Table 2 2 Table 2 2 Water Zone Data Species Constraint CGUESS CTOT h Amount mol 1 0e 7 1 0e 7 h20 Amount mol 1 0 1 0 na Amount mol 1 0e 10 1 0e 10 skdd1 Amount mol 1 0e 10 1 0e 10 skdd2 Amount mol 1 0e 10 1 0e 10 skdd3 Amount mol 1 0e 10 1 0e 10 To create the boundary water zone Ur de wo Mop Select Water Boundary in the list on the left Click Add In the Create a New Zone dialog type Water Boundary Zone and click OK Click Apply In the list on the left click beside Water Boundary to expand the subtree 10 6 7 Table 2 3 Water Zone Data In the subtree under Water Boundary click Water Boundary Zone to display the zone parameters to the right of the list Enter the data that is shown in Table 2 3 Species Constraint CGUESS CTOT h Amount mol 1 0e 7 1 0e 7 h20 Amount mol 1 0 1 0 na Amount mol 1 0e 4 1 0e 4 skdd1 Amount mol 1 0e 4 1 0e 4 skdd2 Amount mol 1 0e 4 1 0e 4 skdd3 Amount mol 1 0e 4 1 0e 4 To create the permeability porosity zone 7 OV BGN ER Select Permeability Porosity in the list on the left Click Add In the Create a New Zone dialog type Perm Por Zone and click OK Click Appl
28. e only by those competent in the field of multi phase multi component fluid flow in porous and fractured media PetraSim is intended only to supplement the informed judgment of the qualified user The software package is a computer model that may or may not have predictive capability when applied to a specific set of factual circumstances Lack of accurate predictions by the model could lead to erroneous conclusions All results should be evaluated by an informed user Throughout this document the mention of computer hardware or commercial software does not constitute endorsement by Thunderhead Engineering nor does it indicate that the products are necessarily those best suited for the intended purpose viii Acknowledgements We thank Karsten Pruess Tianfu Xu George Moridis Michael Kowalsky Curt Oldenburg and Stefan Finsterle in the Earth Sciences Division of Lawrence Berkeley National Laboratory for their gracious responses to our many questions We also thank Ron Falta at Clemson University and Alfredo Battistelli at Aquater S p A Italy for their help with T2VOC and TMVOC Without TOUGH2 T2VOC TOUGHREACT and TOUGH Fx HYDRATE PetraSim would not exist In preparing this manual we have liberally used descriptions from the user manuals for the TOUGH family of codes Links to download the TOUGH manuals are given at http www petrasim com More information about the TOUGH family of codes can be found at http www esd Ibl gov TOUGH2
29. ferring to the tables Please note if table entries are blank then those parameters should not be set The mineral calcite is considered to be at equilibrium and no parameters for dissolution precipitation or additional mechanisms should be specified The mineral quartz has no additional mechanisms Several minerals have only 1 additional mechanism There is no table column for Initial Volume Fraction as all minerals should be given the same value for that parameter 1 0e 6 Select albite low in the list under Minerals To edit dissolution rate parameters for albite low 1 Under Specify Kinetic Constraints click to select Dissolution 2 Click Edit This will open the Edit dissolution Rate Parameters dialog 3 Inthe Activation Energy EA box type 69 8 from Table 3 1 4 Inthe Rate Constant k25 box type 2 7542e 13 from Table 3 1 5 Click OK to save changes and exit the Edit Dissolution Rate Parameters dialog To edit precipitation rate parameters for albite low Under Specify Kinetic Constraints click to select Precipitation Click Edit This will open the Edit Precipitation Rate Parameters dialog On the Options tab in the Initial Volume Fraction box type 1 0e 6 Click the Energy tab In the Activation Energy EA box type 69 8 from Table 3 1 In the Rate Constant k25 box type 2 7542e 13 from Table 3 1 Click OK to save changes and exit the Edit Dissolution Rate Parameters dialog DLOOY UL Oe 4e
30. gg HUNDERHEAD 403 Poyntz Avenue Suite B Manhattan KS 66502 USA 1 785 770 8511 www thunderheadeng com TOUGHREACT Examples PetraSim 5 TOUGHREACT Examples Table of Contents RIDO EU viii Acknowledgements sss00sss 4000000 0000400000000 00 0000 00000000000 RARE R RR Y ERR a PEDE RARE RRRE bann esse KEKSE REEDS ENRE sees ix Mol 1 Using TOUGHREACT PERLE 1 MAUL FIISS eite RUE bU M EE AE EM 1 Thermodynamic Database esee nennen enhn en enne th insana ss sss sse tasasa asse essa ssa sana sss ease sa aga nis 1 2 Aqueous Transport with Adsorption and Decay EOS9 eese eee ERR e eee eene 2 DIET eig o TOM sc LEE 2 Create the TOUGHREACT model 2 Specify the Solution Mech 2 Specify Z DIVISIONS E 3 Create the MEN BEE 3 Global ele EE 3 Simulation EE 3 EOS Dates use ee 4 Material Properties REM 4 Material Data ana admin annat atdet 4 Relative Permeability ccccccccccsssssssscecececsesesesaeeeceeecesseseeseseceescsesesaeaeeeseesceesesaeaeseeeesseuseaeaeeeeesesesees 4 Capillary E DEE A Initial EONAitoNSnuas egenandeler er Ge ar de 5 Define Boundary Conditions 5 Water SOURCE TTT TEE 5 gel le den EE 6 Print Center TR 6 Solution ele 6 MICI EE 6 Irumm m 7 Sinus Re M 7 OUTPUT Control S mme Rs 7 TOUGHREAGCT Solution Parameters
31. he Edit Layers dialog Click the Chemical Zones tab Select Set Zone Data From the Initial Water Zone Boundary Water Zone Permeability Porosity Zone and Linear Kd Zone lists select the respective zones that have previously been created punk Click OK to exit the Edit Layers dialog Save and Run The input is complete and you can run the simulation If you haven t already you may want to save your model in a directory specifically intended for the simulation results For example 1 Onthe File menu click Save As 2 Inthe File Name box type C t2react_example1 t2react_example1 sim 3 Click Save To run the simulation on the Analysis menu click Run T2REACT View 3D Results To view the 3D results for a simulation on the Results menu click 3D Results The data for the current simulation will be automatically loaded and displayed Because this is a 1 D model the isosurfaces do not display the data well To turn off the isosurfaces on the View menu click Show Isosurfaces We will instead define a slice plane through the model to better display the output data To create a slice plane 1 Onthe Results menu click Slice Planes 2 Inthe topmost Axis list select Z 3 Inthe topmost Coord box type 5 4 Click Close to close the Slice Planes dialog To view 3D results as shown in Figure 2 5 1 Inthe Time s list select 4 32E06 2 Inthe Scalar list select nat 3 Use the mouse to rotate the model to a good
32. ifers ECO2N Description This problem is example five in the TOUGHREACT manual It is a 1 D radial problem in which CO2 is injected into a well field 100 m in depth and extending with a 100 000 m radius CO2 is injected at a rate of 90 kg s which is approximately equivalent to that generated by a 300 MW coal fired power plant The CO2 injection continues for 100 years This problem demonstrates the restart feature to run for an additional 900 years with no additional CO2 injection Entering some parameters for the geochemical system in this example problem can be time intensive A partially completed PetraSim file containing only the parameters for chemical components can be found in the resources archive on the PetraSim support website It is located in the t2react_co2_disposal part1 geochem_basic sim If this file is loaded the example problem can be continued from the section Create the Model Boundary In addition completed PetraSim files for both parts of this problem may be found in t2react_co2_disposal part1 co2_disposal_p1 and t2react_co2_disposal part2 co2_disposal_p2 Create the TOUGHREACT Model We first will create a new model using TOUGHREACT and ECO2N and specify a default model boundary 1 On the File menu click New 2 For the Simulator Mode select TOUGHREACT 3 For the Equation of State EOS select ECO2N Click OK to create the new model Global Properties We will first define all material and chemical properties
33. igure 2 2 To open the Create Mesh dialog on the Model menu click Create Mesh 1 Forthe Divisions select Regular 2 Inthe X Cells box type 60 3 Inthe Y Cells box type 1 Click OK to create the mesh Divisions Regular X Cells 60 Y Cells 1 Note Z divisions are set by layer Figure 2 2 The Create Mesh dialog The values shown will create a regular 60x1x1 mesh Global Properties Global properties are properties that apply to the entire model In this example the only thing we will change is the analysis name To edit global properties you can use the Global Properties dialog On the Properties menu click Global Properties Simulation Name 1 Inthe Global Properties dialog click the Analysis tab 2 Inthe Name box type TOUGHREACT Example 1 EOS Data The EOS Equation of State tab displays options for EOS9 1 Inthe Global Properties dialog click the EOS tab 2 Inthe Reference Pressure Pa box type 1 0E5 3 Inthe Reference Temperature C box type 4 0 Click OK to close the Global Properties dialog Material Properties To specify the material properties you use the Material Data dialog This example requires one material To open the Material Data dialog on the Properties menu click Edit Materials Material Data 1 Inthe materials list select ROCK1 In all three Permeability boxes X Y and Z type 6 51E 12 In the Wet Heat Conductivity box type 0 0 In the Specific
34. ion Controls dialog click the Times tab In the End Time box type 100 days In the Time Step box type 10 0 In the Max Num Time Steps list type 1000 In the Max Time Step list select User Defined In the Max Time Step box type 8 64E3 s Oy Ur dou Most input boxes taking a time input will allow the user to enter the time in seconds s minutes min hours h months month and years yr If no unit is specified seconds will be used Weighting 1 Inthe Solution Controls dialog click the Weighting tab 2 Asthe Density at Interface option select Average of Adjacent Elements Convergence 1 Inthe Solution Controls dialog click the Convergence tab 2 Inthe Relative Error Criterion box type 1 0E 6 Solution Controls Times Solver Weighting Convergence Options Relative Error Criterion RE1 1E 06 Absolute Error Criterion RE2 1 00000 Figure 2 3 Solution Controls Convergence Click OK to exit the Solution Controls dialog Output Controls By default the simulation will print output every 100 time steps We can change the resolution of the output in the Output Controls dialog On the Analysis menu click Output Controls In the Print and Plot Every Steps box type 500 3 Inthe Additional Output Data group select Fluxes and Velocities Primary Variables and Additional TOUGHREACT Variables In addition to printing output every 500 steps we can also specify times for
35. k water V 0 1 m day a I gt Figure 2 1 Aqueous Transport with Adsorption and Decay Model after 1 The completed PetraSim file for this example problem may be found in a resources archive on PetraSim s support web site The file is located in the t2react_example1 folder of the resources archive and is named t2react example1 sim Create the TOUGHREACT model We first will create a new model using TOUGHREACT and EOS9 and specify a default model boundary On the File menu click New For the Simulator Mode select TOUGHREACT For the Equation of State EOS select EOS9 For the Model Bounds Default enter the values from Table 2 1 Click OK Wi P a HP Table 2 1 Model Boundary Dimensions Axis Min ml Max m X 0 0 12 0 Y 0 0 1 0 Z 0 0 1 0 The Simulator Mode and Equation of State will be remembered for the next time a new model is created Specify the Solution Mesh Specifying the mesh takes two steps First we must enter the Z divisions per layer Then we create the mesh Specify Z Divisions We must first specify the Z divisions for the default layer To open the Edit Layers dialog on the Model menu click Edit Layers 1 Inthe layers list select Default 2 For Dz select Regular 3 Inthe Cells box type 1 Click OK to apply the changes and close the Edit Layers dialog Create the Mesh Next we will create the actual mesh using the Create Mesh dialog as shown in F
36. na 1 Select na in the list under Primary Species 2 Inthe pane on the right select Output Concentration History at Selected Cells This will output additional data for cells that have previously been identified for printing time history data To edit parameters for skdd1 1 Select skdd1 in the list 2 Inthe pane on the right select Output Concentration History at Selected Cells 3 Select Enable Kd and Decay 4 Inthe Decay Constant box type 0 0 To edit parameters for skdd2 1 Select skdd2 in the list 2 Inthe pane on the right select Output Concentration History at Selected Cells 3 4 Select Enable Kd and Decay In the Decay Constant box type 4 0113E 7 To edit parameters for skdd3 1 Select skdd3 in the list 2 Inthe pane on the right select Output Concentration History at Selected Cells 3 Select Enable Kd and Decay 4 Inthe Decay Constant box type 4 0113E 7 Click OK to exit the Chemical Components dialog TOUGHREACT Zone Data The next task is to create the zone data which can be done in the Geochemical Zones dialog To open the Geo chemical Zones dialog on the Tough React menu click Zone Data Initially there will not be any zones in the model To creat Gy UL dw OLIN 7 e the initial water zone Select Water Initial in the list on the left Click Add In the Create a New Zone dialog type Water Zone and click OK Click Apply In the list on the left click besid
37. of the list 7 Edit each cell in the table setting the Constraint CGUESS and CTOT values for each species as shown in Table 3 5 Table 3 5 Water Initial Zone Species Constraint CGUESS CTOT alo2 Amount mol 1 078E 08 1 361E 08 ca 2 Amount mol 4 479E 03 4 737E 03 cl Amount mol 0 9109 1 001 fe 2 Amount mol 2 615E 07 3 022E 07 h Amount mol 8 48E 08 0 0432 h20 Amount mol 1 1 hco3 Amount mol 1 841E 08 4 562E 02 k Amount mol 5 805E 03 5 980E 03 mg 2 Amount mol 2 348E 05 2 669E 05 na Amount mol 0 9006 0 9905 o2 aq Amount mol 2 763E 66 8 646E 02 sio2 aq Amount mol 9 203E 04 1 034E 03 so4 2 Amount mol 1 443E 16 1 324E 09 8 Click Apply To create the mineral zone Select Mineral in the list on the left Click Add In the Create a New Zone dialog type Mineral Zone and click OK Click Apply v pwnn In the list on the left click beside Mineral to expand the subtree 23 6 Inthe subtree under Mineral click Mineral Zone to display the zone parameters to the right of the list 7 Edit each cell in the table setting the Vol Fraction Grain Radius Surface Area and Units values for each mineral as shown in Table 3 6 Table 3 6 Mineral Zone Mineral Vol Fraction Grain Radius Surface Area Units albite low
38. reate the Model Boundary eegen aan a ERR ENEE ues RR VER RENE 25 Edit the Default Layer un ea ug Deren kn Bein 25 Specify the Solution Mech 26 Specity Z DivISIOnS sioe TT 26 Create E IMSS s er ee ee Eb Er I ES 26 Define Boundary Conditions eene nnne ennt nana sss s essi nete sa sans ases sisti aaa naar na an 27 Solution Contro ls sr s ee AA AEG 28 TIMES vare i rv ina 28 soner 29 Output Conttols EAEE E a ID nde UNI 29 Associate Zones with Mech 29 Saved RUM att ER 30 WIGWERESUIUS e ee I Saket 30 The Continuation Run Restart 31 Add Restart Data E 32 Sera New ENG Es ee NT 32 Start the Continuation Run 32 VE Sr mto prn eem MUERE 32 References 2 HERR 34 Figures Figure 2 1 Aqueous Transport with Adsorption and Decay Model after 1 2 Figure 2 2 The Create Mesh dialog The values shown will create a regular 60x1x1 mesh 3 Figure 2 3 Solution Controls Convergence ener nnns nnne nnne nn nana sisse s setas a assis nnn 7 Figure 2 4 Primary Species cess eseso tua edad ARENS ae GERE RA TR VES dE E ERR DAN YR ART HAE aske sakke d rs added 9 Figure EAR E 13 Figure 2 6 Cell History 8 0 nern nun Tree RR Ene EXE E Fon ERR 14 Figure 3 1 SAND Material Data 17 Figure 3 2 Primary Species cec dee deel 19 Figure 3 3 Mineral Zone Data 24 Figure 3 4 Model after applying view scale rrrrrrrnnnrorrrrrrnsnonnnnrnrrnrrrnrnrnnnnrnrrnnssnsnnnnnnrnnsrnssnsnnnnnnrsnssnssnnnnne 26 Figure e e KN uge WE 2
39. t C Documents and Settings warkentin My Documents Test examples toughreact co2_disposal co2_disposal_p1 co2_ BNR 1000 0 2000 0 3000 0 40000 50000 60000 70000 80000 Distance A B Figure 3 10 Line Plot of CO2 Saturation SG The Continuation Run Restart During the first part of this simulation we injected 90 kg s of CO2 into the aquifer for 100 years During the second part we will stop injecting CO2 and monitor the aquifer out to 1 000 years Before proceeding create a second folder on your computer for the restart run otherwise the continuation run will overwrite the results from the first run 31 1 Onthe File menu click Save As 2 Inthe File Name box type C t2react_co2_disposal part1 co2_disposal_p2 sim 3 Click Save Next turn off the CO2 injection In the Find box type 1 then press Enter Cell 1 will be selected and centered in the 3D View On the Edit menu click Properties This will open the Edit Cell Data dialog Click the Sources Sinks tab Under Injection click to de select CO2 Click OK to exit the Edit Cell Data dialog Un er ba a Add Restart Data We will use the initial conditions and geochemical data from the end of the previous simulation to start the continuation run To enable the simulation restart feature On the TOUGHREACT menu click Restart Options In the Restart Options dialog click to enable Activate Simulation Restart For Initial Conditions SAVE
40. tivation Rate Constant Energy Constant k25 Energy k25 pyrite 2 0 0 0 0 56 9 4 0e 11 Table 3 4 Additional Mechanism Data for pyrite 2 Mechanism 1 Mechanism 2 Mineral Weighting Activation Exponent Weighting Activation Exponent Factor k25 Energy Factor k25 Energy pyrite 2 3 02e 8 56 9 h 0 5 2 8184e 5 56 9 o2 aq 0 5 fe 3 0 5 To save these changes click Apply Gaseous Species 1 Inthe list on the left of the Chemical Components dialog select Gaseous Species In the Thermodynamic Database list in the middle of the dialog select co2 g 2 3 Click the button to move co2 g into the Current Simulation list on the right 4 Click Apply to add the selected species to the analysis 22 Click OK to exit the Chemical Components dialog TOUGHREACT Zone Data Geochemical zones describe the initial chemical composition of the model You can define geochemical zones using the Geochemical Zones dialog To open the Geochemical Zones dialog on the Tough React menu click Zone Data Initially there will not be any zones in the model To create the water zone Select Water Initial in the list on the left Click Add In the Create a New Zone dialog type Water Zone and click OK Click Apply In the list on the left click beside Water Initial to expand the subtree DAL ssp arc In the subtree under Water Initial click Water Zone to display the zone parameters to the right
41. y In the list on the left click beside Permeability Porosity to expand the subtree In the subtree under Permeability Porosity click Perm Por Zone to display the zone parameters to the right of the list Select Modified Cubic Law To create the linear Kd zone 7 OY Uh BG NL Select Linear Kd in the list on the left Click Add In the Create a New Zone dialog type Linear Kd Zone and click OK Click Apply In the list on the left click beside Linear Kd to expand the subtree In the subtree under Linear Kd click Linear Kd Zone to display the zone parameters to the right of the list For skdd1 and skdd3 in the Density box type 2 6 and in the Kd box type 4 2735E 2 Click OK to exit the Geochemical Zones dialog Associate Zones with Mesh The last task is to associate zones with the mesh This can be done in two ways by region or by cell Initially the model is one layer with one region but the default layer can be subdivided into more regions by using internal boundaries This can be useful since it is also possible to assign material data and initial conditions by region In this case the model will remain a single region We will associate the zones with the default region The association will trickle down to the region s cells To select the region and assign the Zones in the 3D View 11 In the tree view under the Layers subtree select Default Under the Edit menu click Properties to open t
42. y Rate Constant k25 albite low 69 8 2 754E 13 ankerite 2 62 76 1 260E 09 calcite chlorite 88 3 020E 13 dawsonite 62 76 1 260E 09 dolomite 2 52 2 2 951E 08 hematite 66 2 2 5119E 15 illite 35 1 660E 13 k feldspar 38 3 890E 13 kaolinite 22 2 6 918E 14 magnesite 23 5 4 571E 10 oligoclase 69 8 1 4454E 13 quartz 87 7 1 023E 14 siderite 2 62 76 1 260E 09 smectite ca 35 1 660E 13 smectite na 35 1 660E 13 21 Table 3 2 Additional Mechanism Data for Minerals Mechanism 1 Mechanism 2 Mineral Weighting Activation n H Weighting Activation n H Factor k25 Energy Exponent Factor k25 Energy Exponent albite low 6 918E 11 65 0 0 457 2 512E 16 71 0 0 572 ankerite 2 6 457E 04 36 1 0 500 calcite chlorite 7 762E 12 88 0 0 500 dawsonite 6 457E 04 36 1 0 500 dolomite 2 6 457E 04 36 1 0 500 hematite 4 074E 10 66 2 1 000 illite 1 047E 11 23 6 0 340 3 020E 17 58 9 0 400 k feldspar 8 7096E 11 51 7 0 500 6 3096E 22 94 1 0 823 kaolinite 4 898E 12 65 9 0 777 8 913E 18 17 9 0 472 magnesite 4 169E 07 14 4 1 000 oligoclase 2 138E 11 65 0 0 457 quartz siderite 2 6 457E 04 36 1 0 500 smectite ca 1 047E 11 23 6 0 340 3 020E 17 58 9 0 400 smectite na 1 047E 11 23 6 0 340 3 020E 17 58 9 0 400 Table 3 3 Dissolution and Precipitation Data for pyrite 2 Dissolution Precipitation Mineral Activation Rate Ac

Download Pdf Manuals

image

Related Search

Related Contents

Generic User Manual - Predator  Mode d`emploi SensoGate WA 130 H  MS-9A29  mise en garde  Samsung NP275E5E Bruksanvisning (Windows7)    41 - Sozialforschungsstelle Dortmund  

Copyright © All rights reserved.
Failed to retrieve file